講演抄録 における象牙質リンタンク質による石灰化誘導実験 東日本歯学会第 回学術大会 平成 年度総会

<table>
<thead>
<tr>
<th>著者名</th>
<th>斎藤 隆史 根田 隆一</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>東日本歯学雑誌</td>
</tr>
<tr>
<td>巻</td>
<td></td>
</tr>
<tr>
<td>号</td>
<td></td>
</tr>
<tr>
<td>ページ</td>
<td></td>
</tr>
<tr>
<td>発行年</td>
<td></td>
</tr>
<tr>
<td>月</td>
<td></td>
</tr>
<tr>
<td>日</td>
<td></td>
</tr>
</tbody>
</table>
19. 細胞外カルシウム濃度の上昇がラット腹直筋器官培養におけるBMPsの遺伝子発現に及ぼす影響

○有田 博彦, 小山 明宏, 中出 修, 賀来 亨
（北海道医療大学歯学部口腔病理学講座）

〈目的〉われわれは、これまで細胞外カルシウム濃度の上昇が短時間作用において正常ヒト歯肉線維芽細胞のBMP-2, -4, -5のmRNAの発現を上昇させることを報告してきた。本研究は細胞外カルシウム濃度の上昇がラット腹直筋の器官培養においてBMPsのmRNAの発現に影響を及ぼすかどうかを調べたために行われた。

〈方法〉1. 腹直筋は10週齢ラットを屠殺後、直ちに摘出、約1×5×5mm²大に細切し、生理的食塩水中約5分間洗浄したものを用いた。2. その後、種々のカルシウム濃度に調節された0.01％BSA添加DMEMあるいは0.01％BSA添加生理的食塩水において0.5あるいは24時間、器官培養を行い、細胞外カルシウム濃度の上昇がBMPs（BMP-1, -5）のmRNAの遺伝子発現に与える影響を半定量的RT-PCR法により検討した。

〈結果〉BMP-1, -5のうち、ラット腹直筋においてmRNAの発現が認められたのはBMP-4のみであった。2. 0.01％BSA添加DMEMを用いた器官培養において、短時間作用（0.5h）の細胞外カルシウム濃度の上昇は0.4mMにおいてBMP-4のmRNAの発現を増加させた。3. しかしながら、長時間作用（24h）においてはこのような効果は認められなかった。4. 短時間作用（0.5h）の細胞外カルシウム濃度の上昇は1.2mM上昇させた場合において、0.01％BSA添加生理的食塩水においてもBMP-4のmRNAの発現を増加させた。

〈考察〉本研究の結果はわれわれの仮説をさらに支持する結果と考えられた。

20. in vitroにおける象牙質リンタンパク質による石灰化誘導実験

○斎藤 隆史, 松田 浩一
（北海道医療大学歯学部歯科保存学第二講座）

〈目的〉酸蝕によって失われた歯質を生物学的に再建することは、歯科医学の究極的な目標のひとつである。本研究の目的は、in vitro実験系において、象牙質基質中に存在するタンパク質（ホスホホリン）の石灰化誘導能を明らかにすることとともに、臨床における象牙質再建の可能性を検討することである。

〈材料と方法〉8か月齢牛象牙質より、EDTA脱灰、カルシウム沈殿、およびDEAE-Celluloseカラムクロマトグラフィーを経て、ホスホホリンを抽出、精製した。1型コラーゲンは、牛皮膚より抽出したものを使用した。線維化したコラーゲンにホスホホリンを吸着、あるいは架橋剤を用いて共有結合した試料を用いて、ハイドロキシアパタイトに対する飽和度7.74, 7.59, 7.53, および7.41を有するカルシウムモン酸石灰化溶液中にインキュベートすることにより、石灰化誘導能を比較した。さらにNielsenのClassical Nucleation Theoryを用いて、試料と誘導された石灰化物の界面エネルギーを計算した。

〈結果〉1型コラーゲンにホスホホリンを吸着した場合には、ホスホホリンは石灰化を誘導せず、むしろ阻害した。一方、共有結合した場合、μgオーダーで短時間のうちに石灰化を誘導し、石灰化物はX線回折パターンよりハイドロキシアパタイトであることが確認された。また、石灰化誘導能の指標として界面エネルギーを測定したとこ
21. 老齢ラット頭部骨膜下におけるBMP／コラーゲン複合物による骨増生

○村田 勝、牧 富弥代、柴田 敏之、有末 眞
（北海道医疗大学歯学部口腔外科学第二講座）

〈目的〉骨形成タンパク質（BMP）を用いた頭部骨膜下骨増生実験の担体として、従来非吸収材料が使用されてきた。今回、吸収性であるコラーゲンに注目し、アテロコラーゲン溶液を凍結乾燥して加圧することで一定の形状が得られることと操作性に優れていることに着目して、BMPの担体として使用した。実験動物としては老齢ラットを用い、上部の骨形成過程と担体コラーゲンの吸収変化を形態学的に検討した。

〈材料と方法〉
1. BMP担体の複合化 ウシ脱胎骨基質抽出液を限外濾過透析操作後に沈殿物を回収した。次にHeparin-SepharoseカラムとSephacryl S-200ゲル濾過カラムを用いて、分子量16kDaから35kDa相当の溶出画分を分取し、BMP部分精製物とした。BMP（300μg）を含む0.1%TFA溶液と0.3%1型アテロコラーゲン酸性溶液（3.3mM）を滅菌チューブに加えて混和し凍結乾燥した。対照として、コラーゲン酸性溶液（3.3mM）のみを凍結乾燥した。埋入前にステンレス枠を用いて円柱状に加圧整形した。2. 埋入観察方法 担体骨膜下18か月齢のウィスター系雄性ラット頭部骨膜下の矢状縦切開部に埋入物を挿入した。1, 2, 3, 8週後に検出した。試料は固定脱灰後、ヘマトキシリン-エオジン染色を施して光学顕微鏡で観察した。

〈結果〉BMP/コラーゲン群において、1週後には生芽細胞と類骨様細胞の産生が認められた。2週後には骨状の線維性骨形成が進み、3週後には全体的に骨梁の連続性が増加して既存骨と結合していた。担体コラーゲン線維は大部分吸収され、モザイク様骨基質内にエオジン酸染色で線維状の担体コラーゲンが観察されていた。8週後には脂肪細胞を伴う緻密骨に改造成した。一方、コラーゲン単独群においては、全期間を通じて骨・軟骨形成は全く認められず、コラーゲン線維は密に配列して重複し、間葉系細胞の担体内への侵入は絶対に乏しかった。コラーゲンと頭蓋骨の表面には数層の線維性組織の侵入に伴う被包化が観察された。

〈結論〉BMP/コラーゲン複合物は骨吸収能を有する優れた吸収性上部移植材であり、高齢者への応用の可能性が示唆された。

22. ラット顎関節円板におけるデコリンの加齢変化に関する免疫組織化学的研究

○桑原 幹夫、満口 迎、坂倉 康則、矢崎 敏彦
（北海道医療大学歯学部附属歯科学講座、北海道医療大学歯学部口腔解剖学第一講座）

〈目的〉デコリンは、組織形成を構成している小型のプロテオグリカンであり、多くの細胞外基質や成長因子と結合能を有し、細胞増殖、基質形成、組織の機械的特性等に重要な役割を果たしていると考えられている。本研究では、成長期ラット顎関節円板におけるデコリンの加齢に伴う局在の変化を免疫組織化学的手法を用いて検討した。

〈方法〉実験動物には、生後0, 2, 4, 8, 16週齢のWislar系雄性ラットを用いた。4％paraformaldehyde in 0.1M phosphate bufferで脱流固定後、顎関節部を摘出し、さらに同固定波を用い4℃で一晩浸漬固定した。洗浄後、10％EDTA溶液で脱灰し、6μmの矢状断