抄録 トロンピン刺激により惹起されるヒト歯肉線維芽細胞のカルシウムシグナル
5. トロンピン刺激により惹られるヒト歯肉線維芽細胞のカルシウムシグナル

○田中 信久, 森田 貴雄*, 根津 顕弘*, 谷村 明彦*, 溝口 到, 東城 廣介*(
(北海道医療大歯学部歯科臨床学講座・**北海道医療大歯学部歯科薬学講座)

【目的】プロテアーゼ受容体PAR（protease-activated receptor）はトロンピン（TB）やトリプシンなどのセリンプロテアーゼで活性化される7回膜貫型受容体である。現在までに、4種類のサブタイプがクローニングされ、多数の生理的機能を有していることが明らかにされてきた。本研究では、培養ヒト歯肉線維芽細胞（HGF）に存在するPARを同定し、PARを介するカルシウムシグナル応答を解析した。

【方法】細胞内にfura-2を取り込み、細胞内Ca**濃度（[Ca**]**）の変化をCa**画像解析システム（ARGUS-HiSCA）を用いてモニターした。mRNAの発現はRT-PCR法を使って調べた。

【結果】α-トロンピン（α-TB）は濃度依存的に過剰の[Ca**]**上昇を起こし、10mMで最大反応を示し、EC50値は0.8nMであった。α-TBより活性の弱いβ-TB、γ-TBのEC50値はそれぞれ5nMと60nMであった。PARタイプ1の合成アゴニストペプチドは、α-TBと同様の[Ca**]**上昇を起こしたが、タイプ2及びタイプ4の合成アゴニストペプチドは全く効果がなかった。RT-PCR法によりmRNAを調べたところ、タイプ1-mRNAの強い発現が認められた。タイプ2及びタイプ4のmRNA発現は検出されなかった。タイプ3のmRNA発現は極めて弱かった。

【考察】トロンピンはHGFのPARを活性化し、Ca**動員を起こす。RT-PCR解析によりHGFに存在するPARは主にタイプ1であることが明らかとなった。

6. GFPを用いたイノシトール1,4,5-三リン酸受容体の細胞内局在の可視化

○森田 貴雄, 谷村 明彦, 根津 顕弘, 東城 廣介*(
(北海道医療大歯学部歯科薬学講座)

【目的】イノシトール1,4,5-三リン酸受容体（IP,R）は細胞内Ca**ストアからのCa**放出の重要な役割を果たす。その細胞内分布は主に免疫組織化学法を用いて解析されきた。本研究では、クラゲの発光タンパクであるGreen Fluorescent Protein（GFP）とラットIP,Rとの融合タンパクを作製し、これを生きた細胞に発現させ、その細胞内局在を可視化することを試みた。

【方法・結果】GFPのcDNAをラットtype3IP,R（IP,R3）cDNAのN末端側に組み合わせ、GFP-IP,R3融合タンパクを発現させるプラミドベクターを作製した。このベクターをヒト唾液腺培養細胞（HSY）およびヒト結核性細胞系（SH-SY5Y）に導入し、融合タンパクを発現させた。ウェスタンブロット解析及び、この融合タンパクは全長のGFPおよびIP,R3等の性質を含んでいることがわかった。次に、共焦点レーザー顕微鏡でGFP蛍光を観察することによりその細胞内局在を調べた。この融合タンパクは、核を除く細胞質内に、網状構造にほぼ均一な強さで発現していた。さらに、細胞体マーカーであるDiOで染めた染料パターンと比べたところ、これらの分布はよく似ていた。また、この融合タンパクが細胞内構造素に発現することを確かめるために、サポニンで細胞膜へ入れ、細胞質の可溶性成分を除去した。その結果、網状構造の蛍光はほとんど消えずに残っていた。この他にGFPのみの発現させた細胞では、核を含む細胞全体にGFPの蛍光が観察され、サポニン処理によりその蛍光はほとんど消失した。