実験的歯の移動に伴うラットセメント細胞の形態変化

<table>
<thead>
<tr>
<th>著者名</th>
<th>西山 博雅・浜谷 明里・矢嶋 俊彦・坂倉 康則・溝口 到</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>東日本歯学雑誌</td>
</tr>
<tr>
<td>巻</td>
<td></td>
</tr>
<tr>
<td>号</td>
<td></td>
</tr>
<tr>
<td>ページ</td>
<td></td>
</tr>
<tr>
<td>発行年</td>
<td>2004年6月</td>
</tr>
<tr>
<td>URL</td>
<td>http://id.nii.ac.jp/1145/00008838/</td>
</tr>
</tbody>
</table>
Morphological changes of cementocytes in cellular cementum during experimental tooth movement

Hiromasa NISHIYAMA, Meiri HAMAYA, Toshihiko YAJIMA, Yasunori SAKAKURA, Itaru MIZOGUCHI

1Department of Orthodontics, School of Dentistry, Health Sciences University of Hokkaido
2Department of Oral Anatomy, School of Dentistry, Health Sciences University of Hokkaido

Abstract

This study examined morphological changes in cementocytes of the cellular cementum on the pressure side during experimental tooth movement, using hematoxylin and eosin-stained sections, an immunohistochemical method with antibody for single stranded DNA, and confocal laser scanning microscopy (CLSM). The upper first molars of 8-week-old Wistar rats were forced to move buccally by nickel-titanium wire.

The following results were obtained:
1. Nuclear condensation and fragmentation appeared in several cementocytes adjacent to the hyalinized PDL. These cells showed a positive reaction to the antibody for single stranded DNA.
2. The number of cementocytes with apoptosis progressively increased up to 2 days.
3. At 4 days, the number of cementocytes, which were positive for the single stranded-DNA antibody had decreased, and the number of empty lacunae increased.

These results demonstrate that cementocytes in the cellular cementum adjacent to the hyalinized PDL underwent cell death via apoptosis.

Key words: cementocyte, cellular cementum, apoptosis, tooth movement.
I 緒言

歯に矯正力を加えると、歯根膜には圧迫力、および牽引力が発生する。圧迫側においては、歯根膜の圧迫による血流の阻害、および硝子様変性部の出現、マクロファージ系の細胞による変性組織の吸収、そして破骨細胞による歯槽骨の吸収（穿下性吸収）がおこる。一方、牽引側では、歯根膜が牵引されることにより血流が活性化され、骨芽細胞、線維芽細胞が増殖し骨形成が行われる。このように、矯正力学の移動は、外力に対する歯周組織の一連の反応と位置づけることができる。

矯正力による歯の移動に伴う歯周組織の変化については、従来より数多くの報告があるのである。1904年Sandstedtは、イヌを用いた実験的観察から、圧迫側歯根膜に均質無構造の硝子様変性組織が出現し、それに隣接する歯槽骨に穿下性骨吸収が行われることを初めて報告した。その後、Schwarz、Oppenheim、WaldoとRothblatt、Macapanら、Reitan、ReitanとKvamにより硝子様変性組織付近では、骨の吸収および添加と同時に歯根表面の吸収がみられると報告された。しかし、従来の歯の移動に伴う歯周組織の反応に関する研究では、破骨細胞、骨芽細胞、あるいは線維芽細胞などの歯根膜組織を対象にしたものがほとんどであった。

歯は、生理的条件下で常に進化現象が起こっている骨と比較し吸収されにくい、矯正治療はこの両者の吸収に対する抵抗性の差を利用し歯の移動を行っている。しかし、臨床的には歯の矯正移動により歯根の短小化などの歯根吸収がしばしば観察される。矯正歯科で認められる歯根吸収の多くは、歯根表層あるいは歯根尖に限局した小さなものであり、最終的にはセメント芽細胞による吸収窩の修復機能が起き、臨床上大きな問題とはならない。しかし、歯根尖が広範に吸収され歯の著しい動揺をきたし、歯の機能と安定性に大きな影響を及ぼすことが稀にある。このような重度の歯根吸収の原因に関しては、過大な矯正力（治療期間の長期間）、歯根形成の異常、歯の外傷の既往、または歯周病の緩解、全身的な代謝障害、ホルモンバランスの異常など、様々な要因が指摘されているが、その正確な原因に関しては明らかではない。

セメント質は歯根象牙質の表面を覆う石灰化組織であり、歯根膜および歯槽骨とともに歯を支持している。一般にセメント質は無細胞セメント質と有細胞セメント質とに分類され、ヒト、ラットおよびマウス等において、無細胞セメント質は歯頸側歯根に、有細胞セメント質は根尖側歯根に分布している。形態的には有細胞セメント質は、骨小腔および骨細管と同様のセメント小腔およびセメント細管のなかに、セメント細胞およびその突起を入れていることなど多くの点で骨組織に似ているが、血管を含まないこと、吸収されにくいことなど、骨組織とは異なる特性を有することが報告されている。しかし、いずれにもその本態や矯正力に対する反応性に関しては不明な点が多く、歯を構成する硬組織のなかで最も難見に乏しい組織である。

そこで本研究では、矯正力に対するセメント質の反応を明らかにすることを目的として、圧迫側有細胞セメント質中のセメント細胞の経時的形態変化について検討を行った。

II 材料および方法

1. 実験動物

実験動物には、生後8週齢のWistar系雄性ラット74匹を用いた。すべての実験動物は、北海道医療大学動物実験センターにて飼育し、通常のラット用固形飼料（オリエンタル酵母工業、東京）と水を十分に与え、自由摂食させた。なお
お，すべての実験動物の取り扱いは，北海道医療大学動物実験の指針に基づいて行った。

2．実験的歯の移動方法

実験的歯の移動は，Igarashiらの方法に準じ，矯正用ニッケルチタンワイヤー（直径0.012 inch，長さ18.5 mm，Rocky Mountain Morita）を用いて初期荷重約60gfで上顎第一臼歯の頸側移動を行った（図1）。

図1．本研究で用いた歯の移動装置の模式図

2.1：第一臼歯，2.2：第二臼歯，2.3：第三臼歯

3．実験期間

実験群には，装置着後3，6，12時間，1，2，4，7日を各8匹，対照群として装置未着着の8週齢および実験群と同じに観察期間を設けた4，7日後のラットを各6匹用いた。

4．試料の作製

各実験期間終了後，実験動物はベントパルビジール（40mg/kg）による麻酔下にて，4％paraformaldehyde（0.1M PB，pH7.4）固定液を用い，上行大動脈より灌流固定を30分行った。その後，上顎骨を摘出し，同固定液を用いて4℃で12時間の浸漬固定を施し，固定終了後4℃で10％EDTA溶液（0.01M PBS，pH7.4）による6週間の脱灰後，通法に従いアルコール系列で脱水し，透徹後，パラフィンに包埋した。臼歯部切合面に平行に，厚さ5μmの連続横断切片を根分岐部より根尖部まで作製した。切片には，Hematoxylin-Eosin染色（H－E）を施した。

5．アポトーシスの観察

上記パラフィン切片を用いて，アポトーシスに特有な一本鎖DNA（断片化部位）に対する抗体を用いた免疫染色を施し，光学顕微鏡を用いて観察した。

免疫染色は内因性ペルオキシダーゼの除去をIsobe法により5mM過ヨウ素酸水溶液と3mM水素化ホウ素ナトリウムを用いて行い，5％正規極血清によるブロッキングを行った後，一次抗体は抗ss－DNAウサギポリクローナル抗体（DAKO JAPAN）を反応させ，二次抗体にはHRP包合ヤギ抗ウサギIgG（BIO SOURCE International）を用いアポトーシスに特有なss－DNAの標識を行った。その後，DAB（武藤化学）により発色し，対照染色はメチルグリーンにて行った。

6．共焦点レーザー顕微鏡によるセメント細胞の観察

各実験期間終了後，実験動物はベントパルビジール（40mg/kg）による麻酔下にて，4％paraformaldehyde（0.1M PB，pH7.4）固定液を用い，上行大動脈より灌流固定を30分行った。その後，上顎骨を摘出し，同固定液を用いて4℃で12時間の浸漬固定を施し，固定終了後4℃で10％EDTA溶液（0.01M PBS，pH7.4）による6週間の脱灰後，ショ糖溶液に浸漬後，ドライアイスとアセトンを使用し，OCT compoundに包埋した。試料は，凍結切片作製まで－80℃に保存した。通法に従い，臼歯部合面に平行な20μmの横断連続凍結切片をクライオスタット（CM1850，LEICA，Germany）にて根分岐部より根尖部まで作製した。薄切後，Alexa
図2 ラット上顎右側第一臼歯部の脱灰横断切片（H－E染色像）
近心根、近心舌側根、近心頸側根、遠心舌側根、遠心頸側根の5根が認められる。
黒枠は、本研究の観察部位である近心根の圧迫側を示す。歯根の移動方向を矢印にて示す。
M：近心、D：遠心、B：頸側、P：口蓋側（bar = 500μm）

488標識phalloidinによるF－actin染色、ならびに4′, 6-diamino-2-phenylindole,dihydrochloride（DAPI）による核染色を施し、Perma
Fluor（Thermo Shandon, USA）にて封入を行った。その後、共焦点レーザー顕微鏡
（CLSM）（TCS NT, LEICA）を用い励起波長488
nmおよびUV（347nm）にて観察を行った。

8. 観察部位
　観察部位は、歯の移動群において根尖側の釉
子様変性組織が出現する第一臼歯近心根の口蓋
側セメント質とした（図2）。

III 結果

1. H－E染色所見
　対照群の歯根膜は、全周にわたってほぼ均一に

図3 上顎左側第一臼歯部の脱灰横断切片（H－E染色像）
対照群の根尖部切片を示す。bはaの黒枠部分の
拡大像。
bar (a) = 500μm, bar (b) = 100μm.
図4：歯の移動に伴う第一臼歯近心根尖圧迫部位の経時的変化（H－E染色）
a：荷重負荷後6時間、圧迫された歯根膜に硝子様変性組織の出現がみられる。（矢印）
b：12時間、歯根膜の硝子様変性組織の範囲の増加がみられる。（矢印）
c：1日、硝子様変性組織（矢印）に隣接した有細胞セメント質の核の収縮および断片化（矢頭）が認められる。
d：2日、セメント細胞の核の断片化（矢頭）と空胞化したセメント小腔（矢印）が認められる。
e：4日、セメント細胞の消失したセメント小腔（矢印）が認められる。
f：7日、セメント細胞の消失したセメント小腔（矢印）の範囲はセメント質表面から深層に拡大している。

bar (a, b)=50μm, bar (c, d)=10μm.

の幅を示していた（図3）。対照群では術後4,7日および7日においても移動前の試料とほぼ同様な結果が得られた。歯根全周にわたり有細胞セメント質の厚い層が観察された。

歯に荷重負荷後6、12時間、1、2、4、7日のH－E染色像を図4に示す。荷重負荷後3時間で第一臼歯近心根根尖に一部圧迫像がみられ、6時間よりエオジン好染性の硝子様変性組織
図 5：歯の移動に伴う第一臼歯近心根根尖圧迫部位の経時的変化（免疫染色）
a：硝子様変性組織に隣接する表層の細胞に抗ss－DNA抗体に対する陽性反応が認められる（矢頭）
b, c：抗ss－DNA抗体陽性反応を示すセメント細胞（矢頭）の増加がみられる。
d：抗ss－DNA抗体陽性反応を示すセメント細胞は消失した。（bar=10μm）

組織が出現した（図 4 a)。その後、硝子様変性組織の範囲の増加が認められた。1日で変性組織に
隣接する有細胞セメント質内のセメント細胞の
一部に核の濃縮および断片化が観察された（図
4 c)。2日後、核の濃縮および断片化は消失し空洞部内
に多く観察されるようになった。4日以降ではセメント小胞の空胞化が顕著となっ
た。

2. 免疫染色所見

荷重負荷後12時間より硝子様変性組織に隣接する
セメント質において、抗ss－DNA抗体に対する
陽性反応が認められた（図 5 a)。1日でセメ
ント細胞はだらけとした陽性反応を呈し後に認められ
ようになり（図 5 b)。2日後、数少ないセメント細胞におい
て抗ss－DNA抗体陽性反応がみられた（図 5 c)。4日後では硝子様変性組織に隣
接するセメント質中に陽性反応を示す細胞は減少し、7日ではほとんど反応は認められなかっ
た。

3. 共焦点レーザー顕微鏡所見

荷重負荷後12時間で変性組織に対応する有細胞
セメント質のセメント細胞の一部に核の濃縮
断片化が見られたが、セメント質表面の細胞
との突起の接触は残存していた（図 6
a, b)。1日では、セメント細胞の核の濃縮および
断片化が観察されるのに加え、セメント細胞
の突起の消失、および細胞質におけるF－actin
の陽性性の低下がみられた（図 6 c, d)。2日で
はさらにセメント細胞におけるF－actinの染色
性の消失も認められた（図 6 e, f)。4日ではセメ
ント細胞の細胞質や核の染色性はほとんど消失し（図 6 g)。7日では細胞の変化はさらに進行し、萎縮した細胞質がわずかに残存しているの
が認められた（図 6 h)。
図6：共焦点レーザー顕微鏡所見

a, b：荷重負荷後12時間、歯根膜の硝子様変性組織に隣接するセメント細胞の一部に核の濃縮がみとめられるものの、セメント細胞の突起は残存している。
c, d：荷重負荷後1日、濃縮した核と断片化（矢頭）が認められ、セメント細胞の突起の消失、および細胞質のF-actinに対する染色性が著しく低下した。
B：歯槽骨 CC：有細胞セメント質 D：象牙質 P：歯髄 PDL：歯根膜

bar (a, c) = 50μm, bar (b, d) = 20μm.

Ⅳ考察

1. 歯の移動方法について

本実験に用いた歯の移動方法は、Igarashiらの方法に準じて行った。この方法では、ニッケルチタン合金ワイヤーの超弾性の特性を利用しているため、任意の矯正力を歯に持続的に負荷することを可能にしている。また、この方法では、根尖側に近い部位を回転中心とした傾斜移動を示すため、硝子様変性組織は根尖部周辺に出現する。

本研究の目的は、変性組織が出現する圧迫側におけるセメント細胞の組織変化をみることを目的としている。したがって、本研究では、予備実験として、有細胞セメント質が分布する根尖部に硝子様変性組織が広範に出現する力の大き
図6：共焦点レーザー顕微鏡所見
e, f：荷重負荷後2日目、歯根膜圧迫部位に隣接するセメント細胞のF-actinの染色性はさらに低下し、小胞内の核の染色性も消失した。
g：荷重負荷後4日目、セメント細胞の細胞質や核の染色性はほとんど消失している。
h：荷重負荷後7日目、萎縮した細胞質がわずかに残存するのみとなっている（矢印）。
B：歯槽骨CC：有細胞セメント質 D：象牙質 P：歯齢 PDL：歯根膜 bar=50μm.

きさを確認するため、初期荷重20gf、40gf、60gfの移動実験を行い、変性組織の出現様相を比較検討した。その結果、いずれの荷重条件においても変性組織の出現が見られたが、特に60gfの初期荷重によって、広範な変性組織が根尖部に形成されていることが明らかとなったため、本研究では、60gfの初期荷重を歯の移動に適用することとした。

2. セメント細胞の観察方法について

本研究では、骨細胞の細胞質と核の形態を同時に把握するため、蛍光標識されたphalloidinによる細胞質染色とDAPIによる核染色の二重染色を行った。有細胞セメント質に存在するセメント細胞は、骨細胞に比較して、その細胞突起が少ないことが指摘されている。しかし、蛍光強度が高く、また退色しづらいという特徴を有しているAlexa488標識phalloidinを用いることによって、十分セメント細
胞の細胞突起を含めた形態を把握することができた。Phallolidinは毒キノコの一種であるAmanita phalloidesから抽出されたbicyclic peptidesであり、F-actinに特異的に結合することが知られている[20]。本研究では、予備実験として、F-actinに対する抗体を用いた免疫組織化学染色と蛍光標識されたphallolidinによる蛍光染色との比較検討を行った。その結果、phallolidinによる染色法では、その適用が凍結切片に限られるものの、抗体法に比べてその染色性が強く、セメント細胞や骨細胞の細胞突起の細部にわたって反応性を示すことができ明らかになった。また、併せてAlexa488標識とFITC標識のphallolidinについても染色性の比較を行った結果、前者は蛍光強度が強く、また退色しづらいという特徴を有しており、共焦点レーザー顕微鏡による観察により適しているもののと考えられた。しかし、荷重荷重1日以降では、細胞死を示すセメント細胞の染色性が低下しており、セメント細胞の形態を観察することは困難であった。これは、細胞死に伴うF-actinの分解によるものと考えられる。

一方、核染色にはDAPI[28,29, Pi[30, YOYO-1 iodine[31]などの様々な染色方法が適用されているが、本研究で用いたDAPI法は、mRNAとの交差反応による細胞質の染色が無いこと、他の方法で行う塩酸とprotease K処理の操作が必要でないという利点を有していた。以上の予備実験の結果により本実験では、Alexa488標識phallolidinによる細胞質染色とDAPIによる核染色の二重蛍光染色を用い行った。

3. セメント細胞の形態変化について

アプロトーシス細胞の形態学的特徴には、細胞の縮小、クロマチンの凝縮、核の断片化、細胞表面の平滑化、細胞の断片化があげられる。また、生化学的には、ヌクレオソーム単位のDNAの断片化が観察され、遺伝子に支配された細胞死と定義されている。一方、ネクローシスは不可逆性の損傷により生じる病理的死と定義される。その形態学的特徴としては、ミトコンドリアや小胞体の膨化、細胞の膨化と溶解、イオン輸送系の崩壊、細胞内容物の流出などが現れ、アプロトーシスとは明確に区別されている。

本研究においては、歯に荷重負荷後12時間から2日にかけて歯子様変性組織に隣接したセメント細胞にクロマチンの凝縮、核および細胞の断片化、ss-DNA抗体陽性反応などの典型的なアプロトーシスの特徴を示す細胞が多数観察されたことから、歯の発生初期に認められた細胞形態の変化は、アプロトーシスであると考えられた。今回の実験系で認められた変化は、歯根膜の虚血・低酸素状態がストレスとして作用し、隣接しているセメント細胞にアプロトーシスを引き起こしたと考えられる。

骨細胞や軟骨細胞におけるアプロトーシス細胞の処理に関して、アプロトーシス小体が周囲細胞の食作用により早期に処理されない状況下において、アプロトーシス細胞がネクローシスに移行するとの報告がある[31,32]。本研究と同じ実験系で行われたラット歯槽骨骨細胞の細胞死に関する研究[33]でも、同様の細胞形態変化が観察されている。

4. 歯根吸収について

一般的に歯根表層に存在するセメント質は、骨組織に比べて組織活性や組織改造能力が低く、吸収されにくい組織とされている。しかし、Ketcham[34]は、臨床的な観点から、歯根吸収が矯正学的歯の移動と密接な関連性を有することを報告した。その後、多くの研究者によって矯正学的歯の移動時における歯根組織に形成される歯子様変性組織に対応した歯根表層に高い頻度で吸収が認められること、および歯子様変性組織の吸収過程で出現するマクロファージ、異物巨細胞、あるいは破骨細胞によってセメント質の吸収が起きることが明らかにされた[5,8–10,17,34–37]。
しかし、福山により、歯根吸収は仔子様変
性組織の出現部位だけでなく、従来例歯根膜
域あるいは生理的な歯の移動においても認め
られることが報告されており、その発現機
序に関しては不明のままである。

本研究では、仔子様変性組織に隣接するセメ
ント細胞が細胞死を起こすことを明らかにし
た。最近の細胞の組織学的所見から、骨細胞
の細胞死と骨吸収の関連性が指摘されている。
Nobleらは、骨組織のアポトーシスが、胎生
期の骨組織、成人の軟骨性骨形成、および骨創
震災周辺のosteophyteに認められることから、
アポトーシスと骨造の関連性を指摘した。ま
た、Hamayaらは、歯の移動に伴い出現する
変性組織に隣接する骨細胞においてアポトーシ
スを認めたことから、骨細胞のアポトーシスが
歯槽骨の吸収機転と関係していることを示唆
している。もちろん、骨組織とセメント質ではそ
の生物学的特性が異なるが、前述した骨
組織において示唆されている骨吸収の機転が、
歯癒学的歯の移動におけるセメント細胞の細胞
死と歯根吸収との関係にも適用できる可能性が
考えられる。今後、セメント細胞の細胞死と歯
根吸収の変化をより長期的にみていき、両者に
関連性、ならびに歯根吸収の機転を証明してい
きたいと考えている。

V 結 論

ラットを用いた実験的歯の移動によって、以
下のことが明らかになった。

1. 基本染色所見より、圧迫側歯根膜に生じ
た仔子様変性組織に隣接するセメント細胞の形
態変化が観察された。従前件後1日よりセメ
ント細胞の一部に核の濃縮や断片化が認められ
た。2日では変化を示すセメント細胞は深部に及
んだ。

2. 抗ss-DNA抗体を用いた免疫染色より、変
性組織に隣接するセメント細胞に陽性反応が認
めた。12時間より陽性反応はみられ、2日で
最も多くのセメント細胞に陽性反応が認められ
た。その後反応は減少した。

3. 共焦点レーザ顕微鏡所見より、12時間で
変性組織に隣接するセメント細胞の一部に核の
濃縮、断片化がみられたが、セメント細管の細
胞突起は残存していた。1日では核の濃縮および
断片化が観察されるのに加え、細胞突起の消失
および細胞質のF-actinに対する染色性の低下
がみられた。2日ではさらにセメント細胞の染色
性の低下がみられ、4日後ではセメント細胞およ
び核の染色性はほとんど消失し、萎縮した細胞
質がわずかに残存しているのが認められた。

以上の結果より、実験的歯の移動によって、
圧迫側歯根膜に生じた仔子様変性組織に隣接す
る有胞セメント質のセメント細胞にアポトーシ
スが示された。

文 献

1. Sandstedt C：Einige Beitrage zur Theorie der
Zahnregulierung. Nord Tandlakere Tidsskr., 4：236–
245, 1904.

2. Schwarz AM：Tissue changes incidental to or-
18：331–352, 1932.

3. Oppenheim A：A Possibility for physiologic ortho-
328, 1944.

4. Waldo CM and Rothblatt JM：Histologic response
to tooth movement in the laboratory rat. J Dent Res,

5. Macapanan LC, Weinmann JP and Brodie AG：
Early tissue changes following tooth movement in rats.

6. Reitan K：Some factors determining the evaluation
of forces in orthodontics. Am J Orthod., 43：32–45,
1957.

7. Reitan K：Effects of force magnitude and direction
of tooth movement on different alveolar bone types.

8. Reitan K：Clinical and histologic observations on
tooth movement during and after orthodontic treatment.

