地域歯科治療および内歯科学における绿膿菌由来溶血毒素に関する研究

<table>
<thead>
<tr>
<th>著者名</th>
<th>鎌口 有秀・中村 麗子・岡本 公彰・馬場 久衛</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>東日本歯学雑誌</td>
</tr>
<tr>
<td>巻</td>
<td></td>
</tr>
<tr>
<td>号</td>
<td></td>
</tr>
<tr>
<td>ページ</td>
<td></td>
</tr>
<tr>
<td>発行年</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>http://id.nii.ac.jp/1145/00008839/</td>
</tr>
</tbody>
</table>
Prevotella intermediaおよびPrevotella nigrescens由来
溶血毒素に関する研究

鎌口 有秀*, 中村 麗子*, 岡本 公彰**, 馬場 久衛*

*北海道医療大学歯学部口腔細菌学教室
**韓国大学歯学部口腔細菌学教室

Study on the hemolysin from Prevotella intermedia and
Prevotella nigrescens

Arihide KAMAGUCHI*, Reiko NAKAMURA*,
Masaaki OKAMOTO** and Hisae BABA*

*Department of Oral Microbiology, School of Dentistry, Health Sciences University of Hokkaido.
**Department of Oral Bacteriology, School of Dental Medicine, Turumi University.

Abstract

Hemolysin genes of Prevotella intermedia that have been reported were not detected by PCR in many
strains of P. intermedia and Prevotella nigrescens. In both organisms, hemolytic activity was observed in
many strains which had not retained the hemolysin genes. Hemolysin was partially purified from the outer
membranes of P. intermedia and P. nigrescens. This hemolysin was activated with SH reagents and in-
hhibited with SH blockers. After heating at 100℃ for 10 minutes, the hemolytic activity was almost inhib-
ited, but heat stable hemolysin was also observed. Therefore, it is suggested that P. intermedia and P. ni-
grescens have two different hemolysins on the outer membrane which are related to growth in the oral
cavity.

Key word: hemolysin, Prevotella intermedia, Prevotella nigrescens

緒 言

口腔内における黒色素黴産生菌の1種として
Prevotella intermediaとPrevotella nigrescensが存
在する。P. intermediaは正常歯肉潰のみなら
ず、成人性歯周炎、急性壊死性潰瘍性歯肉炎、
妊娠性歯肉炎から検出される。一方P. ni-
grescensも正常歯肉潰から検出されるのに加
え、成人性歯周炎、感染根管から検出され
る。両菌は発育するためにPorphyromonas

受付：平成16年3月23日

(43)
gingivalisと同様にヘモグロビンやヘミンを必要とする。P. intermediaとP. nigrescensは溶血毒素を産生し、赤血球よりヘモグロビンやヘミンを獲得しているものと考えられる。また、一般に細菌の産生する溶血毒素は病原性と何らかの関連性が指摘されている。P. intermediaとP. nigrescensの産生する溶血毒素が口腔内でどの様な作用を及ぼすかは不明である。P. intermediaとP. nigrescensの溶血毒素の精製法は確立されていないことより、既にBeemらの報告したP. intermediaの溶血毒素遺伝子の塩基配列を基にして、組み換え型溶血毒素を作製し、溶血毒素の性状を検討することを試みた。しかし、溶血毒素遺伝子のPCR産物と溶血活性の間に不一致が見られた。そこで、P. intermediaとP. nigrescensの溶血毒素遺伝子の存在の有無と溶血の関係を検討し、報告されたものは異なる新たな溶血毒素とその遺伝子の存在の可能性を示唆した。また、P. intermediaとP. nigrescensの溶血毒素をそれぞれ部分精製し、それらの性状について検討を行った。

実験方法

供試菌株および培地

P. intermedia ATCC 25611（基準株）、JCM 6322、32（臨床分離株）、43（臨床分離株）、87（臨床分離株）、P. nigrescens ATCC 25261（基準株）、5（臨床分離株）、6（臨床分離株）、8（臨床分離株）、9（臨床分離株）、19（臨床分離株）、IN19（臨床分離株）、58（臨床分離株）、65（臨床分離株）、67（臨床分離株）を酵母エキス、ヘミン、メニジオン添加トリプトク・ソイ・プロレス（TYHM培地）にて嫌気的に培養した。

溶血毒素遺伝子の検出

Beemらの報告したP. intermediaの溶血毒素遺伝子を検出する為に以下のプライマーを用いてPCRを行った。ORF 1を增幅するプライマーは（P1プライマー（PCR産物：1,070 bp）：P1 F；5’ AATAATGCTGATAATTCTCCG3’、P1 R；5’ TATCCAGGATAAATAGGATC3’、P1-2プライマー（PCR産物：797 bp）：P1-2F；5’ ACAAACTTGTGTTAATATAGAG3’、P1-2R；5’ GGCTGAAATGTTAATATAGAG3’、P2プライマー（PCR産物：781 bp）：P2F；5’ ACTCAA-GAAATGCTTAAGACG 3 ’ 、 P2 - R； 5 ’ GCTGCAATAATATGGTGTG3’、P2-2プライマー（PCR産物：451 bp）：P2-2F；5’ TAGGTGCTGAAAGAGACCG3’、P2-2R；5’ ACCATATGTCGCAATAGTGCG3’、P3プライマー（PCR産物：1,927 bp）：P3 F 5’

Fig. 1. Agarose gel electrophoresis patterns of PCR products from P. intermedia ATCC 25611, P. nigrescens ATCC33563, ATCC25261, and IN19.(A): Lanes 2 to 8 indicate PCR products from P. intermedia ATCC25611. Lanes 9to15 indicate PCR products from P. nigrescens IN19.(B): Lanes 2 to 8 indicate PCR products from P. nigrescens ATCC25261. Lanes 9to15 indicate PCR products from P. nigrescens ATCC33563. Samples of both gel lanes indicate as bellows : lane 1 : 1kb ladder, Lane2 and 9 : PCR products by P1 parimer pair(1,070bp), lanes3and10 : PCR products by P2 primer pair(781bp), lanes4and11 : PCR product by P3 primer pair(1,927 bp), lanes5and12 : PCR product by P1-2 primer pair(796bp), lanes6and13 : PCR product by P2-2 primer pair(451bp), lanes7and14 : PCR product by P3-2 primer pair(1,771bp), lane8and15 : PCR product by P3-3 primer pair(618bp).
CTTTAAGCAAAAAGCATACGC3'、P3R5' CAAACACATTCTTTAATCTC3'、P3-2プライマー（PCR産物：1,771bp）：P3-2F：5'TGGAATGGGCAGACCGTAGAGG3'、P3-2R： 5' CAGGCCAAAGACGAAATGTTCTCG3'、 P3-3プライマー（PCR産物：610bp）：P3-3F；5' CCTAATCTTGACATTGGTCGC3'、P3-3R； 5'TTGATGAGTTCAGCAGCTCC3'）である。 PCRの条件は前加熱94℃、5分（1cycle）、変成92℃、1分、アーニリング55℃、1分、増幅72℃、1分（35サイクル）、増幅72℃、5分（1サイクル）で行った。各菌株からのDNAの抽出はSmithら[13]の方法に準じて行った。

外膜画分の分画方法
2LのTYHM培地にP. intermedia ATCC25611またはP. nigrescens ATCC25261を接種し、5日間培養後、10,000gにて30分遠心し、菌体を得た。この菌体を100mlのPBSに懸濁し、氷冷 下でブレンダーにより2分処理した。これを10,000gにて30分遠心し、上清をさらに100,000gにて60分遠心し沈殿を得た。この沈殿を外膜画分とした。

外膜画分の可溶化と溶血毒素の部分精製方法
外膜画分に100mM n-Heptyl-β-D-thiogluco side（HTG）を加え、室温で30分振とうして可溶化した。これを100,000gで60分遠心し、上清をDEAE-Sephadex A-50にかけ、30mM HTG含有50mM Tris-HCl（pH8.5）にて溶出した。吸着物を0.1M NaCl、0.2M NaClを含む30mM HTG含有50mM Tri-HCl（pH8.5）にて溶出した。各フラクションの溶血活性を測定し、活性画分を透析後、凍結乾燥した。これを部分精製溶血毒素とした。

溶血活性の測定方法
1. 菌体の溶血活性の測定方法：菌液の600nmにおけるODを1.5にPBSにて調製した。この菌液2mlを15,000gにて10分遠心し、沈殿にPBSを1,000μL添加し、再懸濁した。これに2％家兎赤血球を1,000μL加え、37℃で60分振とうした。ついで、2,000gで5分遠心し、さらに菌体を除くために上清を15,000gにて5分遠心した。この上清の540nmにおける吸光度を測定した。家兎赤血球を蒸留水にて溶血させたものの540nmの吸光度測定値を100％溶血活性とし、各試料の溶血活性を％で表わした。

2. 溶液の溶血活性の測定方法：溶液（100μL）にPBSまたは阻害剤含有PBSを900μL添加し、さらに2％家兎赤血球を1,000μL加えた。
これを37℃で60分振とう後、2,000gで5分遠心し、上清の540nmのODを測定した。溶血活性は1と同様に％で表わした。

3. 血液寒天培地上での溶血活性の測定方法：TYHM家兎血液寒天培地に各菌を塗抹し、嫌気培養後、コロニーの周囲にベーター溶血環が観察される時は＋、溶血環が観察されないときは－とした。

N末端アミノ酸配列の解析
SDS-PAGE後のゲルをPVDF膜に転写後、クマーシー・プリマントールにて染色した。ついで、目的のタンパク質バンドを切り出しブロテインシークエンサー（Procite492, Applied Biosystems）を用いてアミノ酸配列を決定した。また、この配列をBLAST searchにてホモロジーのあるタンパク質とその遺伝子を検索した。

結果
1. P. intermediaとP. nigrescensからの溶血毒素遺伝子の検出
P. intermediaとP. nigrescensの基準株および臨床分離株の計16株よりBeemら[13]の報告した溶血毒素遺伝子のORF1，ORF2，ORF3領域の検出をPCRで行った。しかし、全てが検出され
たのはP. nigrescens ATCC 33563とIN19の2株のみであった。その他の株はORF2のみが検出されたものが6株、これらの領域が全く検出されないものが8株あった（Table 1）。これらの菌株のうち基準株のP. intermedia ATCC 25611、P. nigrescens ATCC 25261およびORF 1、ORF2、ORF3が検出されたP. nigrescens ATCC 33563とIN19株についてさらに検討を加えた。これらの4株についてORF1は2種のプライマー（P1 and P1-2プライマー）、ORF2は2種のプライマー（P2 and P2-2プライマー）、ORF3は3種のプライマー（P3, P3-2, P3-3プライマー）の異なるプライマーを用いて各領域の検出についてさらに検討した。この結果、P. intermedia ATCC 25611およびP. nigrescens ATCC 25261においてORF2以外は検出されなかった。P. nigrescens ATCC 33563およびP. nigrescens IN19はORF1、ORF2、ORF3がいずれのプライマーでも検出された（Fig. 1とTable 2）。

2. 血液寒天培地と試験管での溶血性について

P. intermedia ATCC 25611、P. nigrescens ATCC 25261、P. nigrescens ATCC 33563、P. nigrescens IN19の血液寒天培地と試験管内での溶血反応を測定した。その結果4株とも血液寒天培地での溶血性は示さなかったが、ORF1、ORF2、ORF3をもつP. nigrescens ATCC 33563とP. nigrescens IN19は試験管内での溶血性は示さなかった。これに対してORF2のみしかもたないP. intermedia ATCC 25611とP. nigrescens ATCC 25261は試験管内溶血性を示した（Table 2）。このことよりORF1、ORF2、ORF3の存在と試験管内の溶血性は一致しなかった。

3. 培養経過と試験管内溶血性

P. intermedia ATCC 25611、P. nigrescens ATCC 25261、P. nigrescens ATCC 33563、P. nigrescens IN19の培養日数と各菌体の試験管内溶血性について検討した。その結果、P. intermedia ATCC 25611およびP. nigrescens ATCC 25261は培養7日目より溶血活性がみられ、培
Fig. 2. Effect of incubation on hemolytic activity of cells of *P. intermedia* and *P. nigrescens*.

- : *P. intermedia* ATCC 25611, : *P. nigrescens* ATCC 25261, : *P. nigrescens* ATCC 33563, : *P. nigrescens* IN 19

Fig. 3. Anion-exchange chromatography (DEAE-Sephadex A-50) pattern of hemolysin from the outer membrane of *P. intermedia* ATCC25611(A) and *P. nigrescens* ATCC25261(B). Abbreviation: HTG; n-heptyl-β-D-thiogalactoside. Line indicates protein at 280 nm of OD. Column indicates the hemolytic activity at 540 nm of OD.

Fig. 4. SDS-PAGE of hemolytic activity positive fractions of DEAE-Sephadex chromatography.

Lane1: low molecular weight marker; lane2: fraction3; lane3: fraction4; lane4: fraction5; lane5: fraction6. Lane7: high molecular weight marker; lane8: fraction3; lane9: fraction4; lane10: fraction5; lane11: fraction6. Arrows indicate the putative hemolysin of *P. intermedia*.

養の経過と共に増加する傾向がみられたが, *P. nigrescens* ATCC 33563および*P. nigrescens* IN 19は7日培養の菌体においても溶血活性はみられなかった (Fig. 2)。このことより、長期培養しても*P. nigrescens* ATCC 33563および*P. nigrescens* IN 19の菌体は試験管溶血活性を示さないことがわかった。

4. *P. intermedia*と*P. nigrescens*の溶血毒素の部分精製とその性状

P. intermedia ATCC 25611と*P. nigrescens* ATCC 25261から得られたOM画分を透析により分離可能なHTGにより可溶化し、溶血毒素を部分精製することを試みた。Fig. 3に示す様に両菌株の外膜画分からの可溶化した溶液をDEAE-Sephadex A-50にかけ、平衡化緩衝液（30 mM HTG含有0.05 M Tris-HCl (pH8.5)）と同じ緩衝液にて溶出した。溶出された画分と0.1 M NaClにて溶出した画分には溶血活性は見られなかった。ついで、0.2 M NaClにて溶出出した画分に溶血活性がみられた。0.3 M NaClから1 M NaClにて溶出した画分には溶血活性はみられなかった。両菌株の外膜画分の溶血毒素の溶出パターンはほぼ同様であった。*P. intermedia*の染色体DNAのシークエンスの殆どが解析され公開されていることより、*P. intermedia*の部分精製溶血毒素のSDS-PAGEのメジャーなバンドのN末端アミノ酸分析を行いデータベースよりホモロジーのあるタンパク質とその遺伝子を推定することを試みた。*P. intermedia*の溶血毒素の部分精製の各フラクションを透析後、SDS-PAGEを行った。その結果4つのフラクションにおいて共通に存在するメジャーなバンドは62 kDa, 82 kDa, 170 kDaの3つのバンドであった (Fig. 4)。そこで、測定可能であった2バンドのN末端アミノ酸分析を行ったところ、82 kDaのバンドのN末端アミノ酸配列はRQSGEIであり、62 kDaのバンドのN末端アミノ酸配列はRAYDQRVETVであった。170
kDaのバンドはPVDF膜に解析に必要量がブロックできず解析できなかった。前2者をデータベースによりホモログ検索を行ったが、いずれもホモロジーのあるタンパク質は見いだせなかった。つまり、P. intermediaとP. nigrescensの部分精製の溶血毒素の溶血活性に対する種々の物質および加熱による影響をみた。各部分精製物のタンパク質量を1mg/mlに調製し、この外膜画分溶液の100μlに種々の物質を添加しその影響をみた。その結果Dithiothreitol, 2-mercaptopethanol, L-cysteineの還元剤を加えることにより溶血活性の増加とN-ethylmaleimide, 5,5'-dithiobis(2-nitrobenzoic acid)のSH基の阻害剤を添加することにより溶血活性の著しい低下がみられた（Table 3）。このことより、溶血毒素のSH基が溶血活性に関与していることが示唆された。また、100℃、10分の加熱により、活性の低下がみられたが、完全に失活しなかった。このことより、溶血毒素の殆どは易熱性であるが、耐熱性の部分も存在するものと思われた。これは複数の溶血毒素が存在する可能性を示唆するものと思われた。

考察

P. intermediaとP. nigrescensは溶血毒素を産生することは知られているが5,13,14,それらの溶血毒素は精製されておらず、生物学的性状や生体における役割については明確にされていない。Beemら13は溶血活性の強い臨床分離株であるP. intermedia 27よりその遺伝子をE. coliで発現させ、P. intermediaの溶血毒素の遺伝子とした。彼らによると、その溶血毒素の遺伝子は3つの領域よりなり、それぞれの領域からのオープンリーディングフレームをORF1, ORF2, ORF3とした。P. intermediaとP. nigrescensは1995年にP. intermediaより再分類されるまでほぼ同一に扱われて来た様にその性状は類似しており、溶血毒素を含めた一般的な生化学的性状による分類はできない。Shahら15によりDNA-DNAハイブリダイゼーションにてP. intermediaとP. nigrescensに分類することが可能になり、また、最近では16SrDNAに対するそれぞれの特異的プライマーを用いてPCR産物により同定が可能になった14。この様にP. intermediaとP. nigrescensは生物学的性状が類似していることより、両菌種からBeemら13の報告した溶血毒素の遺伝子のDNAシーケンスをもとに各ORFに対するプライマーを作製した。ついで、これらのプライマーを用いてPCR産物より組換え型溶血毒素を作製し、その性状を検討することを計画した。しかし、P. intermediaとP. nigrescensの基準株および臨床分離株の計16株の染色体DNAを製品型としてPCRを行ったがORF1, ORF2, ORF3の3つが検出されたものは2株のみであり、その他はORF2のみが検出されるか、全く検出されなかった。また、
ORF1, ORF2, ORF3が検出された菌株は試験管内での溶血反応を示さなかった。Beemらは溶血毒素遺伝子を大腸菌で発現させ、その遺伝子の短縮化と溶血活性の関係を検討した結果、ORF1が血液寒天培地上での溶血活性に関与し、ORF2, ORF3が試験管内溶血反応に関与する遺伝子であると報告した。しかし、今回行った実験ではORF1と血液寒天培地上での溶血活性との関連性はみられず、ORF2とORF3と試験管内溶血反応との関連性はみられなかった。また、溶血反応を示さなかった菌株のORF1, ORF2, ORF3のDNAシークエンスはP. intermedia 27のシークエンスと殆ど一致していた。これとは逆にORF1, ORF3が検出されなかったか、またはORF1, ORF2, ORF3の全てが検出されない菌株は試験管内溶血反応を示した。この様に保有する遺伝子と溶血活性の間には矛盾が生じることになった。このことよりBeemらの報告を基に組み換え型の溶血毒素を作製することは我々が保有する菌株では不可能であることがわかった。この様な現象が生じる原因として3つのことが想定された。1：細菌は菌株の相違により生物学的性状が異なる場合があり、溶血毒素の性状も菌株の相違により異なる場合も報告されている。2：溶血活性がないE. coliにおいて遺伝子を発現させるとE. coliの潜在的な溶血毒素遺伝子が活性化される場合があり、あたかも溶血毒素遺伝子をクローニングしたと思われることが報告されている。3：構造遺伝子は正常であるが、プロモーター領域に変異がある場合、以上のことよりBeemらのP. intermedia 27は特異的な性状を持つ株である可能性が示唆された。これよりBeemらの報告した溶血毒素と異なる性状の溶血毒素が存在する可能性が想定された。そこで、P. intermedia とP. nigrescensの基準株より溶血毒素を部分精製することを試みた。溶血活性は培養上清には存在せず、菌体の外膜画分に存在した。他の口腔細菌においても外膜画分またはvesicle画分に溶血毒素が結合している例は報告されている。P. intermediaおよびP. nigrescensはシドロフォアをもたず、周囲から生体成分に結合した鉄イオンを直接利用することができない。両菌は赤血球から遊離したヘモグロビン、ヘミン等を鈍化として利用する。溶血毒素により赤血球が破壊され、ヘモグロビンやヘミンが遊離しても生体中ではハプトグロブリンやヘモペキシンに素早く結合して微生物が利用できない状態になる。溶血毒素が外膜に結合していることの意義は外膜に結合した溶血毒素が赤血球に作用した場合に溶血と同時にヘモグロビンやヘミンを菌体に結合することができる可能性が想定される。膜結合の溶血毒素としてShigella flexneri等のcontact溶血毒素と呼ばれる溶血毒素が報告されている。これは菌体表層の溶血毒素が赤血球に結合することが必要であり、P. intermediaとP. nigrescensの溶血毒素と類似の性状であるが、S. flexneri等のcontact溶血毒素と呼ばれている溶血毒素は菌が生じていることが必要であり、S. flexneriの食作用の誘導等と関連があるとする。このことより、P. intermediaとP. nigrescensの溶血毒素は外膜結合性であるが菌が生じていても作用すること、また可溶化しても溶血活性を示すことにより、S. flexneri等のcontact溶血毒素とは異なる性状の溶血毒素であった。P. intermediaとP. nigrescensの外膜画分を透析により脱塩可能なデータジェクトにより可溶化し、溶血毒素を部分精製した。溶血活性を示したそれぞれのフランションをSDS-PAGEにかけたところ62kDa, 82kDa, 170kDaの3つのメジャーなタンパクバンドが関与している可能性が示唆された。これら3バンドのうち2バンドのN末端アミノ酸シークエンスはデータベース上ではホモロジーがある物質は検出されず、またBeemらの報告した溶血毒素ともホモロジーは無かった。
SH基還元剤にて活性の増加とSH基阻害剤にて活性の著しい低下がみられたことよりチオール活性型の溶血毒素であると推察された。チオール活性型の溶血毒素としては Streptococcus pyogenes の産生するストレプトクリン O, Streptococcus pneumoniae の産生するニューモリシン, Clostridium perfringens の産生するツエータ毒素など①①～③①グラム陽性菌が産生すると報告されている。これに対し P. intermedia や P. nigrescens のグラム陰性菌の産生するチオール活性型の溶血毒素はあまり報告がない。

溶血毒素は酵素型、穴形成型、界面活性型の 3 つに分類されている。酵素型は Staphylococcus aureus の B 酵素のスフィンゴミリナーゼ、C. perfringens の α 酵素のホスホリパーゼ C 等である①①～③①。これらの酵素は溶血反応を形成するためには 0 ～ 4 ℃にすることが必要でホット・コールド型溶血毒素である。P. intermedia と P. nigrescens の溶血毒素は 37℃ 内反応で溶血することより酵素型ではないことがわかった。穴形成型は E. coli の RTX 溶血毒素や Streptococcus pyogenes のストレプトリジン等である①①～③①。これらの溶血毒素は膜に穴を形成し溶血する。P. intermedia と P. nigrescens の溶血毒素が膜に穴を形成するかどうかは今後の検討課題である。界面活性型は S. aureus のデルタ酵素や Pseudomonas aeruginosa の耐熱性溶血毒素は酸水性の高い界面活性作用により、溶血を引き起こす①①～③①。P. intermedia と P. nigrescens がこの性状を有するかは不明である。

口腔内において歯周病の進行に伴い溶血毒素を産生する細菌が増加することが指摘されている①①。この報告では溶血毒素を産生する菌としては Actinomyces 属, Streptococcus 属, Staphylococcus 属, Prevotella 属, Actinobacillus 属が増加するとしている。その他に溶血毒素を産生する菌として Porphyromonas gingivalis や Treponema denticola が報告されている①①,①①。細菌における溶血毒素は病原性と関連があるとされている。これにより溶血毒素の変異株は動物、培養細胞、in vivo において病原性が低下すると報告されていることより推測されている①①～③①。また、溶血毒素は赤血球以外の種々の細胞に対しても傷害を与えるとされている①①～③①。しかし、P. intermedia や P. nigrescens の口腔細菌の溶血毒素が歯周病においてどのような役割をしているかは不明にされている。しかし、現在最も強く推測されていることの 1 つとして、発育にヘモグロビンやヘミンを必要とする細菌においては赤血球を溶血毒素により破壊し、それらを獲得することが必要不可欠であり、また、溶血毒素は歯周病の初期に関与するようであるがその機序が重要であると考えられている。その他の溶血毒素の病原性については P. intermedia と P. nigrescens からの溶血毒素を精製し、その遺伝子を特定し、さらにその変異株から溶血毒素の生体内での作用について検討することが必要である。

以上のことより P. intermedia と P. nigrescens において既に報告された溶血毒素を含むその遺伝子を異なるもののが存在が想定された。部分精製した溶血毒素は複雑な性質で、チオール活性型の性状を示した。また、溶血毒素の推定分子量は 62 kDa から 170 kDa の間に存在するタンパク質である可能性が示唆された。

謝辞

N末端アミノ酸配列を解析するためにあたりご協力いただいた東京農業大学の渡部俊弘教授および大山教授に心より感謝申し上げます。

文献

1. Shah HN and Garbha SE: Biochemical and chemical studies on strains designated Prevotella intermedia

(50)

24. Sela MN: Role of Treponema denticola in peri-

