表1. ポルフィロニマス・ギンジシャリスの自己融解酵素変異株の性状

<table>
<thead>
<tr>
<th>譜者名</th>
<th>鎌口 有秀</th>
<th>宮川 博史</th>
<th>中澤 太</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>北海道医療大学歯学雑誌</td>
<td></td>
<td></td>
</tr>
<tr>
<td>巻</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>号</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>発行年</td>
<td>2005年</td>
<td></td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>http://id.nii.ac.jp/1145/00009880/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Characterization of an autolysin mutant of *Porphyromonas gingivalis*

Arihide Kamaguchi, Hiroshi Miyakawa and Futoshi Nakazawa

Department of Oral Microbiology, School of Dentistry, Health Sciences University of Hokkaido

Abstract

The results of a BLAST search for autolysin indicated that one ORF was indentified as an autolysin which had 39% homology (58/147 amino acids) with the N-acetylmuramoyl-L-alanine amidase like protein of *Clostridium tetani*. This autolysin mutant of *Porphyromonas gingivalis* was constructed by allelic exchange. The growth curve of the autolysin mutant was the same as that of parent strain. However, the morphology of the autolysin mutant altered into chain forms at the early log-phase.

These results indicate that this autolysin may play an important role in cell division in *P. gingivalis*.

Key words: *Porphyromonas gingivalis*, autolysin, autotolysis, growth

緒 言

計した。

方 法

供試菌株と培養方法

P. gingivalis ATCC 33277株（American Type Culture Collectionより購入）、B4株（自己融解酵素変異株：今回作製）、KDP112（rgpA、rgpB変異株）、KDP129株（*kgp*変異株）、KDP136株（rgpA、rgpB、*kgp*変異株）（これら3株は長崎大学、中山浩次先生より分与）をイーストエキストラクト、ヘミン、メナジオン添加trypptic soy broth（TYHM培地）で嫌気的に培養した。*Escherichia coli* JM109（タカラバイオ株式会社より購入）、DH5α（タカラバイオ株式会社より購入）、pKD355（中山浩次先生より分与）はLuria–Bertani（LB）培地培地または寒天平板培地にて嫌気的に培養した。LB培地は必要時にアスピリン（100μg/ml）またはエリスロマイシン（300μg/ml）を添加した。

供試プラスマドと抽出方法

pGEM（T easy vector, Promega Corporation）、pGEM-K1（*P. gingivalis* 自己融解酵素遺伝子含有、今回作製）、pGEM-K2（*P. gingivalis* 自己融解酵素遺伝子に*Bam* HIリンカー挿入、今回作製）、pGEM-K5（*Bam* HIリンカーキャリ含有自己融解酵素遺伝子にermF–ermAM cassetteを挿入、今回作製）、pKD355（ermF–ermAM cassette含有）。各プラスマドをそれぞれの宿主菌にて培養後、Alkaline Lysis Method (Sambrook and Russell, 2001)にて抽出した。

*P. gingivalis*の自己融解酵素遺伝子の検索

*P. gingivalis*の他の細菌の自己融解酵素遺伝子とのホモジオジー検査にNCBIのEntrezとTIGR（The Institute for Genomic Research）の*P. gingivalis* W83のゲノム・データベースを使用した。

染色体 DNAの抽出

*P. gingivalis*からの染色体DNAはSimthらの方法（Smith et al., 1989）に従行行った。

*P. gingivalis*の自己融解酵素変異株の作製方法

*P. gingivalis*の自己融解酵素遺伝子と示唆される部位をpGEM T–easyベクターにライゲーションし、pGEM K1を得た。これに*Bam* HIリンカーキー挿入しpGEM K2とし、pGEM K2にpKD355より得たermF–ermAM cassetteを挿入しpGEM K5を得た。pGEM K5を*P. gingivalis* ATCC 33277にてエレクトロポレーションにて挿入し、エリスロマイシン含有GAM寒天培地に塗抹、培養後、得られたコロニーを自己融解酵素変異株とした（Fig. 1）。

P. gingivalisの発育曲線の測定方法

試験管（12mm×100mm）にTYHM液体培地またはTYHM液体培地中のヘミンまたはメナジオンを減少量各培地10mlに一夜培養した各菌を0.5ml接種し、嫌気培養培養後、経時的に分光光度計（U–1800 Spectrophotometer, 日立製作所）にてOD590の値を測定した。

結 果

自己融解酵素変異株の作製

多くの他の細菌の自己融解酵素のアミノ酸配列と*P. gingivalis*全アミノ酸配列とのホモジオジー検索の結果、*Clostridium tetani*のN-acetylmuramoyl-L-alanine amidase- likeタンパクで39%（58/147）アミノ酸のホモジオジーがあることがわかった。*P. gingivalis*のこの自己融解酵素遺伝子に対するプライマープレア（Auto F: CGTCTCG AATCTCCGGTGCG, Auto R: TCCAGGCGACTC CGCGC）を作製し、このプライマープレアと*P. gingivalis*染色体DNAをテンプレートとして、1,094bpのPCR産物を得た。このPCR産物を用いallelic exchangeにより得られた変異株をB4株とした。B4株から抽出した染色体DNAをテンプレートとしてAuto FとAuto Rを用いてPCRを行ったところ3.2Kbpに1本のバンドが検出されたことにより、自己融解酵素遺伝子はダブルクロスオーバー変換により組換体が生じていることを確認した（Fig. 2）。

![Fig. 1](image-url)
P. gingivalis ATCC33277株とB4株の発育曲線の比較

親株と変異株の発育曲線をTYHM培地を用いて比較したところ、B4株も親株と同様に自己融解し、その遺伝子の変異では自己融解が抑制されることがわかった（Fig. 3）。しかし、対数増殖期の両菌をグラム染色しその形態を比較すると親株はグラム陰性の短桿菌がみられるのに対して、B4株は連鎖した菌が多くみられた（Fig. 4）。

ヘミンとメナジオン制限下での発育曲線

P. gingivalisの発育必須因子であるヘミンとメナジオン

Fig. 2 Agarose gel electrophoresis pattern of PCR product from P. gingivalis ATCC 33277 and B4. P. gingivalis ATCC 33277 and B4 were analyzed by PCR using the autolysin gene primer pairs (Auto F and Auto R). Lane 1, Mw marker; lane 2, P. gingivalis ATCC 33277; Lane 3, P. gingivalis B4.

Fig. 3 Growth curve of P. gingivalis ATCC 33277 and B4. Overnight cultured cell suspensions of P. gingivalis (0.5 ml) were inoculated into 10 ml of 3 % tryptic soy broth supplemented with 0.5 % yeast extract, 5 µg/ml hemin and 1 µg/ml menadione, and incubated anaerobically at 37°C for the appropriate number of days. The OD at 600 nm is shown along the y-axis.

Fig. 4 Microscopic examination of Gram stained P. gingivalis ATCC 33277 and the autolysin mutant (B4). P. gingivalis ATCC 33277 (A) and B4 (B) were cultured in TYHM broth at 37°C for 10 hr. Each culture was washed with PBS twice and subjected to Gram staining.

Fig. 5 Effect of hemin and menadione limitation of growth of P. gingivalis ATCC 33277. P. gingivalis ATCC 33277 was grown anaerobically at 37°C for 24 hr in 3 % tryptic soy broth supplemented with 0.5 % yeast extract, 5 µg/ml hemin, and 1 µg/ml menadione. After incubation, cells were harvested by centrifugation at 5,000 g for 20 min and washed with the same volume of 3 % tryptic soy broth supplemented with 0.5 % yeast extract. The cell suspension (0.5 ml) was inoculated into each media, which consisted of 3 % tryptic soy broth, 0.5 % yeast extract, and various amounts of hemin and menadione. Concentration of hemin and menadione were indicated in the figure. The OD at 600 nm is shown along the y-axis.
考察

細菌の自己融解はpeptidoglycan hydrolaseにより起こる。この酵素にはmuramidase、glucosaminidase、N-acetylmuramoyl-L-alanine amidase（amidase）とendopeptidaseが含まれる（Smith et al., 2000）。Peptidoglycan hydrolaseは細菌の溶解以外に、抗生物質誘導細菌溶解、細菌の生育、細胞壁の転換、ペプチドグリカンの成熟、細胞の分裂、コンビネーション強さ、タンパク質分泌、病源性などにも関与するとされている（Smith et al., 2000）。近年、細菌の自己融解は真核細胞でのアポトーシスと同様に細菌のプログラム細胞死である可能性が示唆されている（Lewis, 2000）。自己融解による欠損細胞の除去は周囲の細胞への栄養の供給の可能性に加え、ダメージをうけたDNA除去による集団での変異率の低下にも寄与していることが示唆されている（Lewis, 2000）。P. gingivalis in vitroでは定常期にはいると、著しい増殖の低下が観察される（Kamaguchi et al., 2004）。この自己融解がどのような酵素によって生じるかを明らかにする目的で、他の細菌の自己融解酵素とホモジナー検索を行った結果、Clostridium tetaniのN-acetylmuramoyl-L-alanine amidase-likeタンパク質と39%のホモジニアが見つかった（ORF, open reading frame）が検出された。このORFのアミノ酸配列はその他のBacillus subtilisの自己融解酵素中の1つであると32%，Enterococcus faecalisのN-acetylmuramoyl-L-alanine amidaseと31%，Enterococcus faecalisの自己融解酵素でも26%のホモジニアがあった。このP. gingivalisのORFがgene-directed mutagenesisにより作製した変異株（B4株）の発育曲線は親株に大きい変化はなかったが、対数増殖期の初期の菌体は親株に比較して連鎖することが観察された。P. gingivalisにいくつか存在することを示唆される自己融解酵素のうち、この自己融解酵素は対数増殖期における細胞の分裂に関与することが示唆された。Lactococcus lactisのacmB（peptidoglycan hydrolase）産生は対数増殖期で増加が見られており、これはこの酵素の脇写が細胞発生により制御されていることによると報告されている（Huard et al., 2003）。P. gingivalisのこの自己融解酵素も増殖過程において、産生量に変異がある可能性を考えられた。L. lactisのacmBの産生を制御している具体的なもののは明らかにされていないが、プロトン・モチーフ・フォースが制御している可能性が指摘されている（Huard et al., 2003）。

最近、P. gingivalisにおいて自己融解酵素の遺伝子が少なくとも3つ存在する可能性がデータベース上で示唆された（Nelson et al., 2003）。これらの遺伝子と自己融解の遺伝子として可能性は示唆されているが、その遺伝子産物の性状は不明確である。今回我々が検討した自己融解酵素のDNAおよびアミノ酸シーケンスをそれらと比較した結果、新しく自己融解酵素としての可能性は示唆されたが、性状が未知の自己融解酵素の中の1つと一致した（data not shown）。このことからも、今回実験はP. gingivalisの新しい自己融解酵素の性状の変異株を用いた報告が考えられる。2つの自己融解酵素の1つはHayashiら（Hayashi et al., 2002）により報告されたN-acetylmuramol-L-alanine amidaseと一致しており、その遺伝子はamiとされている。今回自らの自己融解酵素遺伝子はDNAおよびアミノ酸のシーケンスにおいてamiとホモロジーはなかったことがより、異なる自己融解酵素であることがわかった（data not shown）。Hayashiらはami変異株を製作了し、その性状について報告しているが、変異株の発育曲線については述べられていない。ami変異株はvesicleを親株より多く放出することに加え長い連鎖を異常的に長い菌株となるとしている（Hayashi et al., 2002）。今回自己融解酵素変異株は連鎖するが、異常に長い菌株はみられず、vesicle産生量にも変化はみられなかった（data not shown）。自己融解酵素としてデータベース上で可能性が示唆された3つの自己融解酵素については物質としての詳細な性状については検討されていない。Bacillus subtilisは35のpeptidoglycan hydrolase遺伝子が存在し、11のファミリーに分けられている（Smith et al., 2000）。このことから、P. gingivalisも複数の自己融解酵素の存在が考えられ、その中の1つを変異させても他の自己融解酵素が働き自己融解は変化しなかったことが推察される。

P. gingivalisにおいて何が自己融解酵素の発現を制御しているか不明であるが、外部の栄養条件が自閉融解酵素の発現を制御する可能性が報告されている（Centy et al., 1993）。E. coliにおいて、アミノ酸が拮抗すると、発生は遅くなりGuanosine-5’-diphosphate-3’-diphosphate（ppGpp）合成が活性化され、主な自己融解酵素の活性
が阻害される（Betzner et al., 1990）。これは、発育が遅いと抗生物質誘導の自己融解に耐性になる機構とされている（Rodionov and Ishiguro, 1995）。*P. gingivalis*においてヘミンおよびメチョンを変化させた低発育状態でも自己融解は観察される。このことより、*P. gingivalis*は発育状態に関わらず自己融解を生じることがわかった。この現象はE. coliにおけるアミノ酸欠損により自己融解が阻害される機構とは異なるものと思われた。

Kamaguchiらは*P. gingivalis*の産生するRgpとKgpは常に安定であり、*P. gingivalis*の自己融解後も菌体外に活性が保たれままで遊離され、成人歯周炎との重要な関連性を指摘した（Kamaguchi et al., 2004）。菌体外に遊離されたRgp、Kgpと自己融解の関係をみるためRgp、Kgpの遺伝子であるrgpA, rgpB, kgpの変異株の発育曲線を検討した。その結果、親株は著しい濃度の低下が見られるのに対して、rgpA, rgpB, kgpの変異株はOD600の濃度が0.9付近で停止した（data not shown）。このことより、*P. gingivalis*の自己融解による濃度の低下のうち、後半の濃度の低下はRgp、Kgpによる自己消化が関与している可能性が示唆された。しかし、*S. aureus*におけるトロトX−100ペニシリン誘導自己融解においては自己融解酵素の前駆体がプロセッシングをうけることが必要であるとしている（Groicher et al., 1993）ことより、*P. gingivalis*においてもRgpやKgpによりプロセッシングを受ける必要がある酵素が存在する可能性も否定できない。

*P. gingivalis*の自己融解がバイオフィルム中においてもin vitroで観察されるように生じるかどうかは不明であるが、ヘミン、メチョン制限下で、発育が遅くても自己融解は観察されることより、栄養状態が悪いと想定されるバイオフィルム中においても生じるものと考えられた。また、バイオフィルム中における自己融解の重要性として、*P. aeruginosain*においてはバイオフィルム形成に細菌由来のDNAが必要であるとされている（Whichur et al., 2002）。この様に、*P. gingivalis*の自己融解は口腔内でのバイオフィルム形成、菌の発育および病原性等多面的に関与している可能性が考えられる。

結 語

*P. gingivalis*の自己融解酵素を明らかにする為に、他の細菌の自己融解酵素とホモジニエーションを行い、C. *te-tani*のN−acetylmuramoyl−L−alanine amidase−likeタンパク質と高いホモジニエーションを見出した。この遺伝子の変異株を作製し、親株との発育曲線を検討したが、両菌株間の差異はみられなかった。

これは、複数存在すると考えられる自己融解酵素のうち、1つの自己融解酵素の変異のみでは、自己融解現象には明らかな差異は認められない可能性も示唆された。しかし、両菌株間の発育時の形態を比較した結果、変異株は対数増殖期の初期に菌体がレンサ状する傾向がみられることより、少なくとも、この遺伝子産物は一般的な自己融解酵素の性状の1つである、菌の分裂に関与する性状を保持している可能性が示唆された。

文 献

Fournier B and Hooper DC. A new two−component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity
Fujimoto DF and Bayles KW. Opposing roles of the Staphylococcus
aureus virulence regulators, Agr and Sar, in triton X–100 and
Gentry DR, Hernandez VI, Nguyen LH, Jensen DB and Casdol M.
Synthesis of the stationary-phase sigma factor σ′ is positively regu-
Grohier KH, Firek BA, Fujimoto DF and Bayles KW. The Staphylo-
coccus aureus IrgAB operon modulates murein hydrolase activity
Hayashi J, Hamada N and Kuramitsu HK. The autolysis of Porphy-
romonas gingivalis is involved in outer membrane vesicle release.
and Chapot–Chartier MP. Characterization of AcmB, an N–acyl-
glucosaminidase autolysin from Lactococcus lactis. Microbiolgy 149:
Ingavale SS, Wanel WV and Cheung AL. Characterization of RAT,
and autolysin regulator in Staphylococcus aureus. Mol Microbiol
Kadowaki T, Nakayama K, Yoshimura F, Okamoto K, Abe N
and Yamamoto K. Arg–gingipain acts as a major processing enzyme for
various cell surface proteins in Porphyromonas gingivalis. J Biol
Kanamitsu A, Nakano M, Shoji M, Nakamura R, Sagane Y, Okamoto
M, Watanabe T, Ohyama T, Ohta M and Nakayama K. Autolysis of
Porphyromonas gingivalis is accompanied by an increase in several
periodontal pathogenic factors in the supernatant. Microbiol Immu
鶴口有秀, 中村徹子, 大山徹, 渡辺俊弘, 関本公, 高橋久衛.
Porphyromonas gingivalisのRgp (arginine specific cysteine prote-
ase)発現に対するquorum sensingの影響. 東日本歯学雑誌 22: 137–148,
2003.
Lewis K. Programmed Death in Bacteria. Microbiology and Molecular
Nakayama K, Yoshimura F, Kadowaki T and Yamamoto K. Involv-
ment of arginine–specific cystein proteinase (Arg–gingipain) in fimb-
riation of Porphyromonas gingivalis. J Bacteriol 178: 2818–2824,
1996.
Nelson D, Potempa J, Kordula T and Travis J. Purification and char-
acterization of a novel cysteine proteinase (periodontal) from Por-
phyromonas gingivalis. Evidence for a role in the inactivation of
human α2–proteinase inhibitor. J Biol Chem 274: 12245–12251,
1999.
Nelson KE, Fleischmann R, Deboy RT, Paulsen IT, Fouts DE, Eisen
JA, Daugherty SC, Dodson RJ, Durkin AS, Gwinn M, Haft DH,
Kolonay JF, Nelson WC, Mason T, Tallon L, Gray J, Granger D,
Tettel H, Dong H, Galvin JL, Duncan MJ, Dewhirst FE and Fraser
CM. Complete genome sequence of the oral pathogenic bacterium
Porphyromonas gingivalis strain W83. J Bacteriol 185: 5591–5601,
2003.
Rodionov DG and Ishiguro EE. Direct correlation between overpro-
duction of guanosine 3′, 5′–bispyrophosphate (ppGpp) and penicil-
Sambrook J, Russell DW, editors. Molecular Cloning A Laboratory
Shingu DL and Shockman. Morphological and physiological of auto-
Slots J and Genco RJ. Black–pigmented Bacteroides species, Capno-
cytophaga species, and Actinobacillus actinomycetemcomitans in
human periodontal disease: virulence factors in colonization, sur-
Slots J. Importance of black–pigmented Bacteroides in human peri-
dontal disease. In Genco RJ, Mergenhagen SE, editors. Host–para-
site interactions in periodontal diseases: American Society for Mi-
Smith GLF, Socransky SS and Smith CM. Rapid method for the puri-
fication of DNA from subgingival microorganisms. Oral Microbiol
Smith TJ, Blackman SA and Foster SJ. Autolysins of Bacillus sub-
tilis : multiple enzymes with multiple functions. Microbiology 146:
Takahashi N, Sato T and Yamada T. Metabolic pathways for cyto-
toxic end product formation from glutamate– and aspartate–contain-
ing peptides by Porphyromonas gingivalis. J Bacteriol 182: 4704–
Whitechurch CB, Tolker–Nielsen T, Ragaas PC and Mattick JS. Extra-
cellular DNA required for bacterial biofilm formation. Science 295:
1487, 2002.