ポルフィロトマノサとポルフィロトマノサの自己融解酵素変異株の性状

<table>
<thead>
<tr>
<th>著者名</th>
<th>鎌口 有秀, 宮川 博史, 中澤 太</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>北海道医療大学歯学雑誌</td>
</tr>
<tr>
<td>巻</td>
<td>24</td>
</tr>
<tr>
<td>号</td>
<td>1</td>
</tr>
<tr>
<td>ページ</td>
<td>41-46</td>
</tr>
<tr>
<td>発行年</td>
<td>2005</td>
</tr>
<tr>
<td>URL</td>
<td>http://id.nii.ac.jp/1145/00009880/</td>
</tr>
</tbody>
</table>
Characterization of an autolysin mutant of *Porphyromonas gingivalis*

Arihide Kamaguchi, Hiroshi Miyakawa and Futoshi Nakazawa

Department of Oral Microbiology, School of Dentistry, Health Sciences University of Hokkaido

Abstract

The results of a BLAST search for autolysin indicated that one ORF was indentified as an autolysin which had 39% homology (58/147 amino acids) with the N-acetylglamamyl-L-alanine amidase like protein of *Clostridium tetani*. This autolysin mutant of *Porphyromonas gingivalis* was constructed by allelic exchange. The growth curve of the autolysin mutant was the same as that of parent strain. However, the morphology of the autolysin mutant altered into chain forms at the early log-phase.

These results indicate that this autolysin may play an important role in cell division in *P. gingivalis*.

Key words: *Porphyromonas gingivalis*, autolysis, autolysis, growth

緒言

*Porphyromonas gingivalis*は成人性歯周炎の主原因細菌の1つであり、線毛、内毒素、アルギニン特異的システインプロテアーゼ（Rgp）、リジン特異的システインプロテアーゼ（Kgp）など多くの病原因子が報告されている（Sloot and Genco, 1984. Sloot, 1982.）*P. gingivalis*は発芽の為のエネルギー源として糖を利用できず、代わりにタンパク質を利用する（Takahashi et al., 2000）。

Rgp, Kgpは病原因子として働くことに加え、外部のタンパク質をプロセッシングし、プロセッシングを受けたタンパク質はその後、種々のペプチダーゼにより分解され場体内にとどかれ、エネルギー源として利用される（Kadowaki et al., 1998. Nakayama et al., 1996. Nelson et al., 1999）。細菌の細胞壁はペプチドグリカンを主成分とする厚い膜であり、増殖時にはこのペプチドグリカンの一部を切断し、そこから新しいペプチドグリカン構成分を連結させる。この古いペプチドグリカンを切断する酵素がムエルニン（glycan）hydrolaseである。しかし、この酵素は過剰に働くと自己融解を起こす（Shungu and Shockman, 1979）。Kamaguchiらは先に*P. gingivalis*はin vitroにおいて、増殖後、著しい自己融解を起こすこと、また、自己融解に伴い菌体外に多くの遊離変のタンパク質の中に*P. gingivalis*の主要な病原因子であるRgp等が存在することを報告した。これらの結果から、*P. gingivalis*は自己融解後もそのRgpによって成人性歯周炎の進行に重大な影響を及ぼしていることが示唆された（Kamaguchi et al., 2004）。*P. gingivalis*の自己融解の機構を明らかにするには本菌の生理作用の解明のみならず、病原性の解明にもつながる重要な課題である。しかし、*P. gingivalis*の自己融解の開始シグナルとなる因子および、関与する酵素については明らかにされていない。そこで、*P. gingivalis*の主要な自己融解酵素を解明する目的で、*P. gingivalis*と他の細菌の自己融解酵素とそのホモロジーの高い遺伝子を検索し、ついで*P. gingivalis*の自己融解酵素の変異株を作成し、その性状を検

受付：平成17年3月31日

(41)
討した。

方 法

供試菌株と培養方法

P. gingivalis ATCC 33277株（American Type Culture Collectionより購入）、B4株（自己融解酵素変異株：今回作製）、KDP112（rgpA, rgpB変異株）、KDP129株（kpg変異株）、KDP136株（rgpA, rgpB, kpg変異株）（これら3株は長崎大学、中山浩次先生より分与）をイーストエキストラクト、ヘミン、メナジオン添加trypic soy broth（TYHM培地）で嫌気的に培養した。Escherichia coli JM109（テカラバイオ株式会社より購入）、DHS5α（テカラバイオ株式会社より購入）、pKD355（中山浩次先生より分与）はLuria−Bertani（LB）液体培地または寒天平板培地にて好気的に培養した。LB培地は必要時にはアンピシン（100μg/ml）またはエリスロマイシン（300μg/ml）を添加した。

供試プラスミドと抽出方法

pGEM（Tea vector, Promega Corporation）、pGEM-K1（*P. gingivalis* 自己融解酵素遺伝子含有、今回作製）、pGEM-K2（自己融解酵素遺伝子に*Bam* H1リンカーゼ挿入、今回作製）、pGEM-K5（*Bam* H1リシンカーゼ含有自己融解酵素遺伝子にermF-ermAMカセットを挿入、今回作製）、pKD355（ermF-ermAMカセット含有）。各プラスミドをそれぞれの宿主菌にて培養後、Alkaline Lysis Method（Sambrook and Russell, 2001）にて抽出した。

*P. gingivalis*の自己融解酵素遺伝子の検索

*P. gingivalis*の他の細菌の自己融解酵素遺伝子とのホモジー検索にNCBIのEntrezとTIGR（The Institute for Genomic Research）の*P. gingivalis* W83のゲノム・データベースを使用した。

染色体 DNAの抽出

*P. gingivalis*からの染色体DNAはSimthらの方法（Smith et al., 1989）に従って行った。

*P. gingivalis*の自己融解酵素変異株の作製方法

*P. gingivalis*の自己融解酵素遺伝子を示唆される部位をpGEM T−easyベクターにライゲーションし、pGEM K1を用いた。これに*Bam* H1リシンカーゼを挿入しPGEK2としました。pGEM K2にpKD355より得られたermF-ermAMカセットを挿入しPGEK5を得た。pGEM K5を*P. gingivalis* ATCC 33277にてエレクトロポレーションにて挿入し、リスロマイシン含有GAM寒天培地に塗抹、培養後、得られたコロニーを自己融解酵素変異株とした（Fig. 1）。

Fig. 1 Construction of a site specific mutant by allelic exchage. The pGEM-K5 containing autoysin gene interrupted by an ermF-ermAM cassette. The plasmid was linearized with NotI and introduced into *P. gingivalis* ATCC 33277 by electroporation. *P. gingivalis* was incubated on GAM agar containing erythromycin (10 μg/ml) for 7 days at 37°C.

*P. gingivalis*の発育曲線の測定方法

試験管（12mm×100mm）にTYHM液体培地またはTYHM液体培地中のヘミンまたはメナジオンを減少量各培地10mlに一夜培養した菌を0.5ml接種し、嫌気培養培養後、経時に分光光度計（U−1800 Spectrophotometer, 日立製作所）にてOD600の濃度を測定した。

結 果

自己融解酵素変異株の作製

多くの他の細菌の自己融解酵素のアミノ酸配列と*P. gingivalis*全アミノ酸配列とのホモジー検索の結果、Clostridium tetaniのN-acetyl-DL-alanine amidase−likeタンパクと39%（58/147 アミノ酸）のホモジーがあることがわかった。*P. gingivalis*のこの自己融解酵素遺伝子に対するプライマーベア（Auto F: CGTCCCG AATCTCCTGACGG, Auto R: TTCAGGCGACACT CCGGC）を作製し、このプライマーベアと*P. gingivalis*染色体DNAをテンプレートとして、1,094bpのPCR産物を得た。このPCR産物を用いallelic exchangeにより得られた変異株をB4株とした。B4株から抽出した染色体DNAをテンプレートとしてAuto FとAuto Rを用いてPCRを行ったところ3.2Kbpに1本のバンドが検出されたことにより、自己融解酵素遺伝子はダブルクロスオーバー変換により組換え体が生じていることを確認した（Fig. 2）。

(42)
P. gingivalis ATCC33277株とB4株の発育曲線の比較

親株と変異株の発育曲線をTYHM培地を用いて比較したところ、B4株も親株と同様に自己融解し、この遺伝子の変異では自己融解は阻止されないことがわかった（Fig. 3）。しかし、対数増殖期の両菌をグラム染色しその形態を比較すると親株はグラム陰性の短桿菌がみられるのに対して、B4株は連鎖した菌が多くみられた（Fig. 4）。

ヘミンとメナジオン制限下での発育曲線

P. gingivalisの発育必須因子であるヘミンとメナジオン

Fig. 3 Growth curve of P. gingivalis ATCC 33277 and B4. Overnight cultured cell suspensions of P. gingivalis (0.5ml) were inoculated into 10 ml of 3% tryptic soy broth supplemented with 0.5% yeast extract, 5 μg/ml hemin and 1 μg/ml menadione, and incubated anaerobically at 37°C for the appropriate number of days. The OD at 600 nm is shown along the y-axis.

Fig. 5 Effect of hemin and menadione limitation of growth of P. gingivalis ATCC 33277. P. gingivalis ATCC 33277 was grown anaerobically at 37°C for 2 hr in 3% tryptic soy broth supplemented with 0.5% yeast extract, 5 μg/ml hemin, and 1 μg/ml menadione. After incubation, cells were harvested by centrifugation at 5,000 g for 20 min and washed with the same volume of 3% tryptic soy broth supplemented with 0.5% yeast extract. The cell suspension (0.5 ml) was inoculated into each media, which consisted of 3% tryptic soy broth, 0.5% yeast extract, and various amounts of hemin and menadione. Concentration of hemin and menadione were indicated in the Figure. The OD at 600 nm is shown along the y-axis.

(A)

(B)
考察

細菌の自己融解はテピドグリカンヒドロラーゼにより起こる。この酵素には、muramidase、glucosaminidase、N-acetylglucosaminoyl-L-alanine amidase（amidase）とendopeptidaseが含まれる（Smith et al., 2000）。テピドグリカンヒドロラーゼは細菌の溶解以外に、抗生物質誘導細菌溶解、細菌の生育、細胞壁の dismantlement、ペプチドグリカンの成熟、細胞の分裂、コンピュータ状態、タンパク質分泌、病原性などにも関与するとされている（Smith et al., 2000）。近年、細菌の自己融解は真核細胞でのアポトーシスと同様に細菌のプログラム細胞死である可能性が示唆されている（Lewis, 2000）。自己融解による欠損細胞の除去は周囲の細胞の栄養の供給の可能性に加え、ダメージをうけたDNAを除去することによる集団での変異率を下げることに寄与していることが示唆されている（Lewis, 2000）。P. gingivalisはin vitroでは定常期にはいるとすく、著しい増殖の低下が観察される（Kamaguchi et al., 2004）。自己融解がどのような酵素によって生じるかを明らかにする目的で、他の細菌の自己融解酵素とホモロジー検索を行った結果、Clostridium tetaniのN-acetylmuramol-L-alanine amidase-likeタンパク質と38%のホモロジーにあるOpen reading frame（ORF）が検出された。このORFのアミノ酸配列はそれ他のBacillus subtilisの自己融解酵素の1つであるyubBと32%、Enterococcus faecalisのN-acetylmuramol-L-ananine amidaseと31%、Enterococcus faecalisの自己融解酵素とも26%のホモロジーがあった。このP. gingivalisのORFをgene-directed mutagenesisにより作製した変異株（B4株）の発育曲線は親株と大きな変化はなかったが、対数増殖期の初期の菌体は親株に比較して顕著に syndromeが欠けたことが観察された。P. gingivalisにいくつか存在することを示唆される自己融解酵素のうち、この自己融解酵素は対数増殖期における細胞の分裂に関与することが示唆された。Lactococcus lactisのacmB（テピドグリカンヒドロラーゼ）が対数増殖期で増加速度やくに低下する。これはこの酵素の転写が細胞発育により制御されていることによると報告されている（Smith et al., 2003）。P. gingivalisの自己融解酵素も増殖過程において、産生量に差異がある可能性も考えられた。L. lactisのacmBの産生を抑制している具体的なものは明らかにされていないが、プロトン・モチーブ・フターシステムが抑制している可能性が指摘されている（Huard et al., 2003）。

最近、P. gingivalisにおいて自己融解酵素の遺伝子が少なくとも3つ存在する可能性がデータベース上で示唆された（Nelson et al., 2003）。これらの効果が自己融解の遺伝子として機能性は示唆されているが、その遺伝子産物の性状は不明確である。今回我々が検討した自己融解酵素のDNAおよびアミノ酸シーケンスをそれぞれと比較した結果、新しく自己融解酵素としての可能性は示唆されたが、性状は未知の自己融解酵素の1つと一致した（data not shown）。このことから、今後の実験はP. gingivalisの新しい自己融解酵素の性状の一部を変異株を用いて明らかにできるものと思われる。2つ目の自己融解酵素の1つはHayashiら（Hayashi et al., 2002）により報告されたN-acetylmuramol-L-alanine amidaseと一致しており、その遺伝子はamiとされている。今回自己融解酵素遺伝子はDNAおよびアミノ酸シーケンスにおいてamiとホモロジーはなかったことより、異なる自己融解酵素であることがわかった（data not shown）。Hayashiらもami変異株を作製し、その性状について報告しているが、変異株の発育曲線については述べられていない。ami変異株はvesicleを産生しつつ多く放出することが加え長い連鎖と異常に長い桿菌になる（Hayashi et al., 2002）。今回自己融解酵素変異株は連鎖するが、異常に長い桿菌はみられず、vesicle産生量も変化はみられなかった（data not shown）。自己融解酵素としてデータベース上に可能性が示唆された3つ目の自己融解酵素については物質としての詳細な性状については検討されていない。Bacillus subtilisは35のテピドグリカンヒドロラーゼ遺伝子が存在し、11のファミリーに分けられている（Smith et al., 2000）。このことから、P. gingivalisも複数の自己融解酵素の存在が考えられ、その中の1つを変異させる他に自己融解酵素の働きが自ら自己融解は変化しなかったことが推察された。

P. gingivalisにおいて何が自己融解酵素の発現を制御しているかは不明であるが、外部の栄養状態が自己融解酵素の発現を制御することが報告されている（Centry et al., 1993）。E. coliにおいて、アミノ酸が枯渇すると、発音が遅くなりGuanosine-5’-diphosphate→5’-diphosphate（ppGpp）合成が活性化され、主に自己融解酵素の活性
が阻害される（Bettner et al., 1990）。これは、発育が遅いと抗生物質誘導の自己融解に耐性になる機構とされている（Rodinov et al. & Ishiguro, 1995）。P. gingivalisにおいてヘミンおよびメタノール量を変化させた低発育状態でも自己融解は観察された。このことより、P. gingivalisは発育状態に関わらず自己融解を生ずることがわかった。この現象はE. coliにおけるアミノ酸凝縮液により自己融解が阻害される機構とは異なるものと思われた。

KamaguchiらはP. gingivalisの産生するRgpとKgpは非常に安定であり、P. gingivalisの自己融解後も菌体外に活性を保つまま遊離され、成人歯周病との重要な関連性を指摘している（Kamaguchi et al., 2004）。菌体外に遊離されたRgp、Kgpと自己融解の関係を示すためRgp、Kgpの遺伝子であるrspa, rpsB, kbpの変異株の発育曲線を検討した。その結果、親株は著しい濃度の低下が見られるのに対して、rspa, rpsB, kbpの変異株はOD_600で濃度が0.9付近で停止した（data not shown）。このことより、P. gingivalisの自己融解による濃度の低下のうち、後半の濃度の低下はRgp、Kgpによる自己消化が関与している可能性が示唆された。しかし、S. aureusにおけるトリトントX-100とヘミン誘導自融解においては自己融解酵素の前駆体がブローザングをうけることが必要であるとされている（Groicher et al., 1999）のことより、P. gingivalisにおいてもRgpやKgpによりブローザングを受ける必要がある酵素が存在する可能性も否定できない。

P. gingivalisの自己融解がバイオフィルム中においてもin vitroで観察されるように生じるかどうかは不明である。ヘミン、メタノール制限下で、発育が悪くても自己融解は観察されることはより、栄養状態が悪いと想定されるバイオフィルム中においても生じるものと考えられた。また、バイオフィルム中における自己融解の重要性として、P. aeruginosaにおいてはバイオフィルム形成に細菌由来のDNSが必要であるとされている（Whichurch et al., 2002）。このように、P. gingivalisの自己融解は口腔内でのバイオフィルム形成、菌の発育および病原性等多面的に関与している可能性が考えられる。

結 語

P. gingivalisの自己融解酵素を明らかにする為に、他の細菌の自己融解酵素とホモジー検索を行い、C. tenebrionisのAcetyl-L-alanine amidase-likeタンパク質と高いホモジーをもつ遺伝子を見つけた。この遺伝子の変異株を作製し、親株との発育曲線を検討したが、両菌株間に差異はみられなかった。

これは、複数存在すると考えられる自己融解酵素のうち、1つのか自己融解酵素の変異のみでは、自己融解現象には明らかな差異は認められない可能性も示唆された。しかし、両菌株間の発育時の形態を比較した結果、変異株は対数増殖期の初期に菌体がレジスする傾向がみられたことより、少なくともこの遺伝子産物は一般的な自己融解酵素の性状の1つである、菌の分裂に関与する性状を保持している可能性が示唆された。

文 献

Fournier B and Hooper DC. A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity

