《原著》

Expansion of the Hybrid Model of Social Orientation and Ultimatum Games：From 2－person to N－person relations

Toshiaki Doi

Abstract

It has already been shown that the decision making of a person in ultimatum games can be explained and predicted very well by the hybrid model of social orientation（Doi，2009；Doi，2010）．However，the hybrid model was developed only for 2－person relations．Social settings，in which more than two persons are involved，are considered to provide a variety of situation where might be possible to observe interesting interactions that do not appear in 2－person relations．Some researchers have already investigated N －person ultimatum games．The purpose of this paper is to show how the hybrid model can be extended to N－person relations，and how the decision making of people in N－person ultimatum games can be explained and predicted by the extended hybrid model．The analysis also reveals that perceptions of the other person＇s motivational state play an important role in the decision making of the allocator in ultimatum games．Interpretation of the motivational component of the decision making process varies depending on factors in the social settings，especially the number of people involved，and this is shown and discussed．

Key words ：social orientation，equality seeking，ultimatum game，allocation， decision making，indifference curve，cooperative，competitive， individualistic，altruistic

1．Geometrical model of social orientation and ultimatum games

People＇s decision makings in social settings rarely follow the rationality of economics，that is，the maximization of one＇s own interest．People usually consider the other person＇s interest in addition to their own，when they have to make a decision．So－ cial orientation is a concept that describes how a person takes the other person＇s interest into consid－ eration，compared with hisher own．Griesinger \＆ Livingstone（1973）showed that the social orienta－ tion of a person can be elegantly expressed geome－ trically，as an orientation θ in a 2－dimensional $X-Y$ space，as shown in Fig．1．Axes X and Y represent the payoffs to oneself and the other person，respectively． Choice alternatives are expressed by points（ x_{i}, y_{i} ），

[^0]and a person is supposed to hold a particular θ uniformly in this space．When a person is given several alternatives，he／she is supposed to choose the alternative that gives the highest m_{i}（coordinate value on axis M ）．Axis M is given by $y=\tan \theta \cdot x$ in $X-Y$ space and m_{i} is given by the following equation．
\[

$$
\begin{equation*}
m_{i}=x_{i} \cos \theta+y_{i} \sin \theta \tag{1}
\end{equation*}
$$

\]

m_{i} is the weighted sum of two people＇s payoffs x_{i} and y_{i} ，and $\cos \theta$ and $\sin \theta$ are the weights given to them．When the m_{i} values of two alter－ natives are the same，a person is indifferent to them． Which altemative gives the highest m_{i} varies de－ pending on social orientation θ ．That is，the social
orientation of a person determines what he/she should pursue when he/she has to choose one from among several altematives. Therefore, θ can be regarded as a motivational component of his/her decision making process, and m_{i} can be interpreted as the subjective values of the given alternatives. Equation (1) gives a straight line in $X-Y$ space, and m_{i} of any point (x_{i}, y_{i}) on this line takes the same value. Therefore, this line, which is perpendicular to axis M, can be regarded as an indifference curve.

Fig. 1 The geometrical expression of social orientation and indifference curves for 2-person relations.

Formally, social orientation θ can take any numerical value. Every person is supposed to own hisher unique orientation θ. Different values of θ give different weights to the payoffs to oneself and the other, and they lead people to make different decisions. Therefore, the geometrical model of social orientation can deal with individual differences in people's choice attitudes. Several social orientations θ are usually called by the specific names shown in Table.1. Each name represents a characteristic choice attitude, which corresponds to a concern for the other's payoff compared with one's own.

The geometrical model of social orientation has been applied universally to research on decision making in interdependent situations. How the decision making of a person for the given 2×2 payoff matrices can be predicted and explained based on the geometrical model has been explicitly shown (Doi, 1984; 1990; 1994). However, it has become clear that the geometrical model has its limitations in explaining the decision making of a person in some social settings. The experimental research on ultimatum games (Güth, Schmittberger, \& Schwarze, 1982) or dictator games (Forsythe et al., 1994), for

Table. 1 Interrelationship among social orientations θ, evaluation formulas, and their interpretations

social orientation	evaluation formula for the given alternatives		interpretation
$\boldsymbol{\theta}$	\boldsymbol{m}_{i}	maximizing	altruistic
90°	y_{i}	other's payoff	cooperative
45°	$\frac{1}{\sqrt{2}}\left(x_{i}+y_{i}\right)$	oae's own and the other's payoff	individualistic
0°	x_{i}	one's own payoff	competitive
-45°	$\frac{1}{\sqrt{2}}\left(x_{i}-y_{i}\right)$	difference of one's own payoff from the other's	aggressive
-90°	$-y_{i}$	(minimining) other's payoff	

example，clearly articulated that people have a strong preference for equal sharing of the given payoff．

Ultimatum games are decision situations where two persons are given a certain amount of payoff， but they have to divide it between them．One person， called the allocator，has to propose how to divide the given payoff between them．Then，the other person， called the recipient，has to decide if he／she accepts the proposed allocation or not．If the recipient ac－ cepts it，both he／she and the allocator can receive a portion of the given payoff according to the pro－ posed allocation．If the recipient refuses to accept it， neither can get any payoff．The experimental studies on ultimatum games have repeatedly shown that people did not follows the rational decision principle in the economics sense，that is，the maximization of one＇s own payoff．The modal proposition was usually a $50-50$ division of the given payoff（Güth， Schmittberger，\＆Schwarze，1982；Güth，1995； Carmer and Thaler，1995；Carmer，2003）．Such ex－ perimental results are interpreted as indicating that people tend to avoid an unfair division of interests， or to prefer equality of received interest．

2．Equality seeking and the hybrid model of social orientation

The geometrical model of social orientation can－ not explain the equality seeking tendency of people in ultimatum games．However，decision making based on equality seeking itself can be geometrically expressed in $X-Y$ space．If a person wants to achieve equal sharing of the given interest，he／she should choose the alternative（ x_{i}, y_{i} ）that minimize d_{i}（the absolute difference between the interests to 2 per－ sons）given in the following equation．

$$
\begin{equation*}
d_{i}=\left|x_{i}-y_{i}\right| \tag{2}
\end{equation*}
$$

Naturally，d_{i} is given by $\left(x_{i}-y_{i}\right)$ when $x_{i}>y_{i}$ ， and by $\left(y_{i}-x_{i}\right)$ when $x_{i}<y_{i}$ ．When $x_{i}=y_{i}$ ， $d_{i}=0$ ．That is，a person evaluates the given alter－ natives of choice（ x_{h}, y ）differently，depending on where they are situated in $X-Y$ space．Substituting $\theta=\frac{3}{4} \pi=135^{\circ}$ or $\theta=\frac{-1}{4} \pi=-45^{\circ}$ into equ－ ation（1），minimization of d_{i} can be achieved by maximization of m_{j} ，that is，
when $x_{i}>y_{i}, m_{i}$ is given by

$$
\begin{align*}
m_{i} & =x_{i} \cos \frac{3}{4} \pi+y_{i} \sin \frac{3}{4} \pi \\
& =\frac{\left(-x_{i}+y_{i}\right)}{\sqrt{2}}=\frac{-d_{i}}{\sqrt{2}} \tag{3}
\end{align*}
$$

and when $x_{i}<y_{i}, m_{i}$ is given by

$$
\begin{align*}
m_{i} & =x_{i} \cos \frac{-1}{4} \pi+y_{i} \sin \frac{-1}{4} \pi \\
& =\frac{\left(x_{i}-y_{i}\right)}{\sqrt{2}}=\frac{-d_{i}}{\sqrt{2}} \tag{4}
\end{align*}
$$

Then，it can be said that a person based on equality seeking activates two different social orientations， that is，$\theta=\frac{3}{4} \pi=135^{\circ}$ when $x_{i}>y_{i}$ and $\theta=\frac{-1}{4} \pi=-45^{\circ}$ ，when $x_{i}<y_{i}$ ．The decision attitude described by（3）and（4）was named the geometrical model of equality seeking（Doi，2009， 2010）．

The hybrid model of social orientation

Both social orientation and equality seeking are considered to play an influential role as a motiva－ tional component in the decision making process of a person in a variety of social situations．Under the assumption that a person＇s decision making is af－ fected by both hisher social orientation and equality
seeking simultancously, Doi (2007) proposed the hybrid model of social orientation. This model was obtained by a linear combination of the geometrical model of social orientation and equality seeking. According to this model, subjective values m_{j} of the altematives of choice (x_{f}, y_{i}) are described by the following two equations.

When $x_{i} \geq y_{i}, m_{i}$ is given by

$$
\begin{align*}
& m_{i}=a\left(x_{i} \cos \theta_{M}+y_{i} \sin \theta_{M}\right)+ \\
& \quad(1-a)\left(x_{i} \cos \frac{3}{4} \pi+y_{i} \sin \frac{3}{4} \pi\right) \tag{5}
\end{align*}
$$

and when $x_{i} \leq y_{i}, m_{i}$ is given by

$$
\begin{align*}
& m_{i}=a\left(x_{i} \cos \theta_{M}+y_{i} \sin \theta_{M}\right)+ \\
& \quad(1-a)\left(x_{i} \cos \frac{-1}{4} \pi+y_{i} \sin \frac{-1}{4} \pi\right) \tag{6}
\end{align*}
$$

The first terms of the right side in (5) and (6) are identical and they express the decision making component based on the social orientation θ_{M} of a person (θ_{14} is used instead of θ to distinguish the hybrid model from the geometrical model). The second terms are different in (5) and (6) and they express the decision making component based on equality seeking.

Parameter a in (5) and (6) takes numerical values between 0 and 1. It expresses how strongly or weakly each component affects the decision making process of a person. When $a=1$, equations (5) and (6) are identical to equation (1), that is, the geometrical model of social orientation. When $a=0$, (5) and (6) are identical to equations (3) and (4), respectively, that is, equality seeking. Therefore, a person makes a decision based only on hisher social orientation θ_{3} when $a=1$, and only on equality seeking when $a=0$. When $0<a<1$, a person is supposed to make a decision based partly on social orientation and partly on equality secking, simultaneously. The closer the value of a to 1 , the more the decision
making of a person is affected by social orientation θ_{M}. On the other hands, the closer the value of a gets to 0 , the more the decision making is affected by equality seeking. Therefore, the hybrid model is considered to be genuine integration of the geometrical models of social orientation and equality seeking. Equations (5) and (6) can be transformed into the following equations.

$$
\begin{align*}
& m_{i}=x_{i}\left(a \cdot \cos \theta_{M}-\frac{(1-a)}{\sqrt{2}}\right)+ \\
& y_{i}\left(a \cdot \sin \theta_{M}+\frac{(1-a)}{\sqrt{2}}\right) \tag{7}
\end{align*}
$$

$$
\begin{align*}
& m_{i}=x_{i}\left(a \cdot \cos \theta_{M}+\frac{(1-a)}{\sqrt{2}}\right)+ \\
& y_{i}\left(a \cdot \sin \theta_{M}-\frac{(1-a)}{\sqrt{2}}\right) \tag{8}
\end{align*}
$$

These two equations express two different straight lines, in $X-Y$ space. When m_{i} in (7) and (8) take the same value, two lines connect necessarily on the line given by $y=x$, resulting in a polygonal line, as shown in Fig.2. Since m_{i} is a subjective value, this polygonal line can be regarded as an indifference curve. The shape and the position of the indifference curve are determined by θ_{3} and a. However, the angle points always situate on the line $y=x$. This indifference curve determines which alternative a person should choose from among the given alternatives. This indifference curve divides a whole space into two areas, upper right and lower left in $X-Y$ space. Any point in the upper right area always gives higher m_{i} than any point in the lower left area. Then a person should choose $\left(x_{3}, y_{3}\right)$ from the three altematives shown in Fig.2.

As discussed earlier, the indifference curve given by (1) is perpendicular to axis M that is given by social orientation θ. Then, there should be social orientations that give the two indifference curves (7)

Fig． 2 Indifference curves of the hybrid model for 2－person relations．
and（8），in $X-Y$ space．Assigning θ_{L} and θ_{V} to such social orientations and l_{i} and n_{i} to the subjective val－ ues of the alternatives based on θ_{2} and θ_{5} ，two equalities（7）and（8）can be transcribed as follows．

$$
\begin{align*}
& l_{i}=x_{i} \cos \theta_{L}+y_{i} \sin \theta_{L} \tag{9}\\
& n_{i}=x_{i} \cos \theta_{N}+y_{i} \sin \theta_{N} \tag{10}
\end{align*}
$$

Mathematical analysis by $\operatorname{Doi}(2009,2010)$ re－ vealed that θ_{L} and $Q_{\text {，}}$ can be interpreted as different modifications of the same Q_{16} ．That is，a person owns a basic social orientation θ_{1} that is active at all times for any alternatives of choice，in $X-Y$ space． However，this θ_{M} is modified by a equality seeking component，differently depending on whether $x_{i} \geq y_{i}$ or $x_{i} \leq y_{i}$ ．Social orientations θ_{L} and θ_{N} are resultant orientations from this modification． Therefore，social orientations θ_{2} and θ_{V} are not ac－ tive simultaneously．Which one is active depends on where the given alternative situates in $X-Y$ space．It can be said that θ_{M} is rather stable，but θ_{L} and θ_{N} are temporal．It seems likely that $\theta_{1 /}$ expresses a trait
of social orientation，and θ_{2} and θ_{v} express a state of social orientation．In other words，the hybrid model of social orientation can be interpreted to be a model of a person who activates two different social orien－ tations，depending on whether $x_{i} \geq y_{i}$ or $x_{i} \leq y_{i}$ ．

3．The application of the hybrid model to ulti－ matum games

Doi $(2009,2010)$ showed how the decision mak－ ing of two persons in ultimatum games can be ex－ plained by applying the above indifference curve analysis．Ultimatum games，where 100 units are provided to 2 persons，can be expressed geometri－ cally as shown in Fig．3．All the possible allocations situate necessarily on line A－B．What the allocator has to do is to choose one point from the line A－B． In response，the recipient has to decide if he／she ac－ eepts or rejects the proposed allocation．If he／she rejects it，neither person will get any units，which corresponds to the origin in $\mathrm{X}-\mathrm{Y}$ space．

Fig． 3 Geometrical expression of 2－person ultimatum games where two persons have to divide the given 100 units．
Decision making of the recipient can be expli－ citly described by hisher indifference curve that passes through the origin in the geometrical expres－
sion of the ultimatum game, as shown in Fig.4. It divides the whole $X-Y$ space into 2 areas, acceptable and rejectable. The acceptable area is grayed in Fig.4. Any point in the acceptable area gives a higher value of m_{i} than the origin. That is, the recipient should accept the allocation if it situats in that area. Therefore, the indifference curve passing through the origin can be regarded as the definite criterion to judge if the recipient should accept the proposed allocation or not. This indifference curve is called FIC fundamental indifference curve (Doi, 2010).

Fig. 4 FIC and 2 indifference curves of the recipient, in 2-person ultimatum games (Example1)

Line segment A-B in Fig. 4 is divided into two line segments by FIC. Line segment B-C is an acceptable segment and A-C is a rejectable. Then, the recipient should accept any allocation from the acceptable segment B-C, and reject any from the rejectable segment A-C. However, the shape of FIC in Fig. 4 is just one example. There are numerous shapes of FIC. Fig. 5 is another example of FIC. Line segment $\mathrm{A}-\mathrm{B}$ is divided into three line segments in Fig.5. The middle segment C-D is acceptable and two outside segments A-C and B-D are rejectable. The recipient is supposed to refuse the allocation corresponding to point B (no unit to the
allocator and 100 units to the recipients). The recipient does not feel happy, even if he/she gets all the given payoff. Furthermore, point E (50units to two persons equally) gives the highest m_{i} in the acceptable segment, in either Fig. 4 or Fig.5. That is, the recipient should feel the highest satisfaction, when the allocator chooses point E as hisher allocation proposal. Since, the shape of FIC is determined by the two variables θ_{M} and a, we can predict unambiguously the decision making of a recipient in the ultimatum games, if those two variables are known.

Fig. 5 FIC and 2 indifference curves of the recipient, in 2-person ultimatum games (Example2)

Decision making of the allocator is more complicated, but it can be described by hisher FIC. Any point on the rejectable segment gives lower $m_{\text {t }}$ than the origin in the $X-Y$ space. That is, there is no use proposing an allocation from the rejectable segment. Then, the allocator is supposed to choose a point that gives the highest m_{i} from the acceptable line segment. However, it is crucial that the chosen point belongs to the acceptable line segment of the recipient. If not, the chosen point will be rejected by the recipient. As shown above, the FIC of the recipient is determined by hisher θ_{M} and a. That is, the allocator has to guess the FIC of the recipient, that is,
hisher θ_{M} and a ．Therefore，the allocator has to find the point that gives the highest m_{i} from among the acceptable line of the recipient．The point giving the highest m_{i} has to be either one among three points， that is，point E or both ends of the acceptable line segment of the recipient．Fig． 6 and Fig． 7 show two examples of the decision making of the allocator． The highest m_{i} is given by point $\mathrm{E}\left(x_{i}=y_{i}\right)$ in Fig． 6 and point $\mathrm{C}\left(x_{i}>y_{i}\right)$ in Fig．7．

Fig． 6 Allocator＇s FIC， 2 indifference curves，and the perceived FIC of the recipient，in 2－person ultimatum games（Example 1）

Fig． 7 Allocator＇s FIC， 2 indifference curves，and the perceived FIC of the recipient，in 2－person ultimatum games（Example 2）

4．Expansion of the hybrid model to N －person relations．

The hybrid model of social orientation for two persons was created combining the classical geome－ trical model of social orientation and equality seek－ ing．Then，first，we will show N －person versions of the geometrical model of social orientation and equality seeking，then we will combine them，in a manner similar to the hybrid model for two persons． An N －person extension of the geometrical model of social orientation has already been presented by Doi（1990）．We will consider this model in detail．

The social orientation of a person and hisher de－ cision making in an N －person situation are ex－ pressed geometrically in the N －dimensional space where axes $X, Y_{l}, Y_{3} \cdots, Y_{n-1}$ represent the payoff to oneself and $n-1$ others．Altematives of choice are expressed by points（ $x_{6}, y_{L,} y_{2}, \cdots, y_{k,} \cdots, y_{m, l,}$ ） in this space．The social orientation of a person is expressed by axis M ，and he／she is supposed to choose the alternative which gives the highest or－ thogonal projection m_{i} to axis M ，in this space．The social orientation θ of a person corresponds to the angle between two axes M and X ．The orthogonal projection m_{i} can be regarded as describing the weighted sum of the payoffs to self and $n-1$ others．Furthermore，theoretical analyses in this pa－ per will be conducted only on the persons who perceive $n-1$ others indifferently，that is，the weights given to the payoffs to $n-1$ others are the same．This restriction is introduced in order to make follow－on discussions simple and clear．

When a person is indiscriminant to $n-1$ others， the orthogonal projection m_{i} is given by the next equation．

$$
\begin{align*}
m_{i} & =x_{i} \cos \theta+\sum_{k=1}^{n-1} y_{k, i} \frac{\sin \theta}{\sqrt{n-1}} \\
& =x_{i} \cos \theta+\frac{\sum_{k=1}^{\mathrm{n}-1} y_{k, i}}{\sqrt{n-1}} \sin \theta \tag{11}
\end{align*}
$$

That is, equation (11) indicates that $\cos \theta$ is a weight given to a person's own payoff and $\frac{\sin \theta}{\sqrt{n-1}}$ is a weight given to $n-1$ other persons' payoffs. Introducing z_{k} given by the next equation,

$$
\begin{equation*}
z_{i}=\frac{\sum_{k=1}^{n-1} y_{k i}}{\sqrt{n-1}} \tag{12}
\end{equation*}
$$

equation (11) can be transformed into the following equation.

$$
\begin{equation*}
m_{i}=x_{i} \cos \theta+z_{i} \sin \theta \tag{13}
\end{equation*}
$$

That is, the social orientation of a person and his/her decision making can be described geometrically, in the 2 -dimensional X - Z space. The social orientation of a person is expressed as the direction of axis M in $X-Z$ space. Axis M is given by the next equation.

$$
\begin{equation*}
z=\tan \theta \cdot x \tag{14}
\end{equation*}
$$

Two-dimensional X - Z space exists inside of the N -dimensional space, and axis Z is given by the composition of unit vectors parallel to $n-1$ axes Y_{k}. That is, z_{i} can be interpreted to be representative of $n-1$ person's payoffs for the given alternative. When $n=2$, equation (11) becomes identical to equation (1). Then, equation (11) can be regarded as an expansion of the geometrical model of social orientation given by equation (1).
θ can take any numerical values in $X-Z$ space. When $\theta=0^{\circ}$, equation (13) gives $m_{i}=x_{i}$. That is, maximizing m_{j} is identical to maximizing x_{i} A person is supposed to make a decision, without paying any attention to how hisher decision will affect other person's payoffs. Then, this orientation $\theta=0^{\circ}$ can be regarded as individualistic social
orientation. On the other hand, when $\theta=\frac{1}{2} \pi=$ 90°, equation (13) gives $m_{i}=z_{i}$. That is, maximizing z_{i} is equivalent to maximizing y_{k}. Therefore, a person is supposed to make a decision to maximize the payoffs to $n-1$ others, neglecting hisher own payoff. Then, this orientation $\theta=\frac{1}{2} \pi=$ 90° can be interpreted as altruistic social orientation.

There are two more orientations worth noting. When $\theta=\tan ^{-1} \sqrt{n-1}$, equation (11) becomes as follows;

$$
\begin{equation*}
m_{i}=\frac{1}{\sqrt{n}}\left(x_{i}+\sum_{k=1}^{n-1} y_{k, i}\right) \tag{15}
\end{equation*}
$$

A person is supposed to maximize the sum of the payoff to everybody including him/herself. That is, orientation $\theta=\tan ^{-1} \sqrt{n-1}$ can be interpreted as cooperative social orientation. Furthermore, when
$\theta=\tan ^{-1} \frac{-1}{\sqrt{n-1}}$, equation (11) will be

$$
\begin{equation*}
m_{i}=\frac{\sqrt{n-1}}{\sqrt{n}}\left(x_{i}-\frac{\sum_{k=1}^{n-1} y_{k i} i}{n-1}\right) \tag{16}
\end{equation*}
$$

A person is supposed to maximize the difference between the payoffs to him/herself and the other persons. Therefore, orientation $\theta=\tan ^{-1} \frac{-1}{\sqrt{n-1}}$ can be regarded as competitive social orientation.

Obviously, the values of $\theta=\tan ^{-1} \sqrt{n-1}$ and $\theta=\tan ^{-1} \frac{-1}{\sqrt{n-1}}$ vary according to n In general, the direction of axis M, that corresponds to a particular ratio of the weights given to the payoff to oneself and $n-1$ others, varies depending on the number of people involved in the social settings. Table. 2 shows how values of $\theta \mathrm{s}$ that correspond to five social orientations change according to n. The
increase of n does not affect θ of altruistic and indi－ vidualistic orientations．Altruistic orientation is al－ ways given by $\theta=90^{\circ}$ ，and individualistic orien－ tation，by $\theta=0^{\circ}$ ．However，the more n increases， the closer θ of cooperative orientation approaches to 90° ，that is，altruistic orientation，and competitive orientation to 0° ，individualistic orientation．There－ fore，the difference between altruistic and coopera－ tive orientations and the difference between indivi－ dualistic and competitive orientations are likely to disappear when n is extremely large．However，in－ terestingly enough，cooperative and competitive orientations are at right angles to each other，regard－ less of n ．

Five social orientations are distinctively different geometrically when $n=2$ ．However，in research on social orientation，altruistic and cooperative orienta－ tions have quite often been classified into pro－social orientation and individualistic and competitive orientations to proself orientation．The above analy－
sis seems to support theoretically the validity of such a classification．

Equality seeking in N －person relations

As we have seen，it was made clear how the geometrical model of social orientation can be ex－ panded to N －person relations．It is now necessary to consider how equality seeking can be expressed geometrically in $X-Z$ space．The essence of equality seeking would be defined as equal sharing of the given payoffs among n persons，in the same way as happens in equality seeking between 2 persons．We suppose that a person making decisions based on equality seeking in N －person relations tries to mi－ nimize the absolute difference between hisher own payoff and $n-1$ other＇s average payoff，that is， $\left|x_{i}-\frac{\sum_{k=1}^{n-1} y_{k i}}{n-1}\right|$ ．This minimization can be achieved by two specific social orientations $\theta=\tan \theta^{-1} \frac{-1}{\sqrt{n-1}}$

Table． 2 Interrelationship among θ of a person，attributes of social orientation，and the number of persons， in N－person relations．This table is effective for the allocator in case of N －person ultimatum games．

interpretation of θ			altruiste	cooperative	individualistic	competitive	aggressive
evaluation formula for the given altematives			y_{i}	$\frac{1}{\sqrt{n}}\left(x_{1}+\sum_{n=1}^{-1} y_{\nu}\right)$	$x_{i} \quad \frac{\sqrt{n-1}}{\sqrt{n}}$	$\overline{1}\left(x_{1}-\frac{1}{n-1} \sum_{k=1}^{n-1} y_{2 c}\right)$	－y_{i}
θ	n	$n-1$	90°	$\tan ^{-1} \sqrt{n-1}$	0°	$\tan ^{-1} \frac{-1}{\sqrt{n-1}}$	－90．0 ${ }^{\circ}$
	2	1	90^{*}	$45.0{ }^{*}$	0^{*}	－45．0 ${ }^{\text {＊}}$	－90．0 ${ }^{*}$
	3	2	90^{*}	$54.7{ }^{*}$	0^{*}	$-35.3{ }^{*}$	－90．0 ${ }^{*}$
	4	3	90°	$60.0{ }^{\circ}$	$0^{\text {e }}$	$-30.0{ }^{*}$	$-90.0{ }^{\circ}$
	10	9	90°	$71.6{ }^{\text {＊}}$	$0^{\text {a }}$	$-18.4{ }^{*}$	$-90.0{ }^{\circ}$
	20	19	90°	77.1^{*}	0°	$-12.9{ }^{*}$	$-90.0{ }^{\circ}$
	40	39	90°	$80.9{ }^{*}$	0°	－9．1＊	－90．0 ${ }^{\circ}$
	60	59	90°	$82.6{ }^{*}$	$0^{\text {e }}$	-7.4^{*}	－90．0 ${ }^{\circ}$
	80	79	$90^{\prime \prime}$	$83.6{ }^{\text {＊}}$	0^{e}	-6.4 ＊	－90．00
	100	99	$90^{\text {a }}$	$84.3{ }^{+}$	0°	-5.7^{*}	－90．0 ${ }^{\circ}$
	1000	999	90°	88.2^{\prime}	0^{*}	$-1.8{ }^{*}$	－90．0 ${ }^{\circ}$

that corresponds to two sets of $(\cos \theta$ and $\sin \theta)$, that is, $\left(\cos \theta=\frac{-\sqrt{n-1}}{\sqrt{n}}, \sin \theta=\frac{1}{\sqrt{n}}\right)$ and $(\cos \theta=$ $\left.\frac{\sqrt{n-1}}{\sqrt{n}}, \sin \theta=\frac{-1}{\sqrt{n}}\right)$. Substituting these sets into equation (11), we obtain the followings.

$$
\begin{align*}
m_{i} & =\frac{\sqrt{n-1}}{\sqrt{n}}\left(-x_{i}+\frac{\sum_{k=1}^{n-1} y_{k i}}{n-1}\right) \\
& =-\frac{\sqrt{n-1}}{\sqrt{n}} x_{i}+\frac{1}{\sqrt{n}} z_{i} \tag{17}\\
m_{i} & =\frac{\sqrt{n-1}}{\sqrt{n}}\left(x_{i}-\frac{\sum_{k=1}^{n-1} y_{k i}}{n-1}\right) \\
& =\frac{\sqrt{n-1}}{\sqrt{n}} x_{i}-\frac{1}{\sqrt{n}} z_{i} \tag{18}
\end{align*}
$$

Equation (17) is effective when $x \geq \frac{1}{\sqrt{n-1}} z$ and (18) is effective when $x \leq \frac{1}{\sqrt{n-1}} z$. Those altematives that give zero difference situate on the axis given by $z=\sqrt{n-1} \cdot x$, in $X-Z$ space. When $n=2$, equations (17) and (18) become to equations (3) and (4), respectively. Therefore, a set made up of equation (17) and equation (18) can be regarded as the geometrical model of equality seeking for N -person relations.

Expansion of the hybrid model to N -person relations

It was made clear that social orientation and equality seeking in N -person relations can be geometrically expressed in 2-dimensional space, in the same manner as 2 -person relations. Then, the expansion of the hybrid model to N -person relations can be carried out straightforwardly, as follows.

When $x \geq \frac{1}{\sqrt{n-1}} z, m_{i}$ is given by

$$
\begin{align*}
& m_{i}=a\left(x_{i} \cos \theta_{M}+z_{i} \sin \theta_{M}\right)+ \\
& \quad(1-a)\left(-\frac{\sqrt{n-1}}{\sqrt{n}} x_{i}+\frac{1}{\sqrt{n}} z_{i}\right) \tag{19}
\end{align*}
$$

And when $x \leq \frac{1}{\sqrt{n-1}} z, m_{i}$ is given by

$$
\begin{align*}
& m_{i}=a\left(x_{i} \cos \theta_{M}+z_{i} \sin \theta_{M}\right)+ \\
& \quad(1-a)\left(\frac{\sqrt{n-1}}{\sqrt{n}} x_{i}-\frac{1}{\sqrt{n}} z_{i}\right) \tag{20}
\end{align*}
$$

These two equations can be transformed to

$$
\begin{array}{r}
m_{i}=x_{i}\left(a \cdot \cos \theta_{M}-\frac{\sqrt{n-1}(1-a)}{\sqrt{n}}\right)+ \\
z_{i}\left(a \cdot \sin \theta_{M}+\frac{(1-a)}{\sqrt{n}}\right) \tag{21}
\end{array}
$$

$$
\begin{array}{r}
m_{i}=x_{i}\left(a \cdot \cos \theta_{M}+\frac{\sqrt{n-1}(1-a)}{\sqrt{n}}\right)+ \\
z_{i}\left(a \cdot \sin \theta_{M}-\frac{(1-a)}{\sqrt{n}}\right) \tag{22}
\end{array}
$$

When $n=2$, equations (19) and (20) become (5) and (6), and equations (21) and (22) become (7) and (8). Therefore, a pair of equation (19) and (20), or (21) and (22), can be definitely regarded as the expansion of the hybrid model to N -person relations. The essential part of the hybrid model, that a person is supposed to make a decision based on social orientation and equality seeking simultaneously, is kept perfectly, and it can be expressed geometrically in 2 -dimensional space, regardless of n.

5. The application of the hybrid model to N -person ultimatum games

In 2-person ultimatum games, the recipient can decide by him/herself if he/she accepts or rejects a proposed allocation, without any restrictions. How-
ever， N －person ultimatum games are in some degree different in this point．There are $n-1$ recipients． The problem is how to make a decision to accept or reject the proposed allocation，and who makes the decision．There could be a variety of ways to make this decision．For example，the decision might be made by one person as a leader or a delegate of $n-1$ recipients，or by rule of majority，or by ano－ nymous agreement，and so on．In any case，if the decision to accept the proposal is made，every reci－ pient gets hisher fair share，and if a decision to re－ ject is made，nobody gets any payoff．That is，the sum or the average of $n-1$ person＇s payoffs is considered to play an important part in making a decision to accept or reject a proposed allocation． The analysis of N －person relations made it clear that $z_{i}=\frac{\sum_{k=1}^{n-1} y_{k, i}}{\sqrt{n-1}}$ can be representative of $n-1$ person＇s payoffs in N －dimensional space．It is inter－ esting that $z_{i}=\frac{\sum_{k=1}^{n-1} y_{k+1}}{\sqrt{n-1}}$ lies just in between the sum and the average of $n-1$ person＇s payoffs．

N －person ultimatum games，from the allocator＇s perspective，can be expressed geometrically in 2 dimensional $X-Z$ space，in the same manner as 2 －person ultimatum games．An N －person ultimatum game，where 100 units are given to be divided，is expressed geometrically，as shown in Fig．8．All the possible allocations are expressed by the points on line segment $\mathrm{A}-\mathrm{B}$ ．The allocation corresponding to point E means that all the people（allocator and $n-1$ recipients）share equal amounts of payoff， that is，$\frac{100}{n}$ ．

The decision analysis on 2－person ultimatum games based on the hybrid model，can be straightforwardly applied to the allocator＇s decision making in N －person ultimatum games，and it can be shown geometrically in $X-Z$ space，as shown in Fig．8．The expression is quite similar to that of the
allocator in 2 －person ultimatum games．The way to determine the allocation is basically the same，re－ gardless of the value of n ．The allocator is supposed to determine hisher proposal based on his own FIC （ θ_{1} and a ）and his／her perceived FIC of the reci－ pients．However the meaning of θ_{1} varies according to n ，as shown in Table． 2 ．

Fig． 8 Allocator＇s FIC， 2 indifference curves，and the perceived FIC of the recipients，in N－person ultimatum games（from allocator＇s perspective）

With respect to the decision making of recipients， there is a problem of how and who makes the deci－ sion to accept or reject the proposed allocation，as discussed above．No matter how the decision is made，a single decision to accept or reject the pro－ posed allocation has to be made，considering the allocated payoff to $n-1$ persons．The payoff to $n-1$ persons is treated by a single parameter $\frac{\sum_{k=1}^{n-1} y_{k j}}{\sqrt{n-1}}$ ，in the analysis of N －person relations in this paper．Therefore，it is possible to suppose that $n-1$ recipients make a decision considering $\frac{\sum_{k=1}^{n-1} y_{k l}}{\sqrt{n-1}}$ ，as if they were a single person．The social orientation θ_{4} of this postulated agent is expressed geometrically in $Z-Y$ space where Z stands for the agent and Y for the allocator．The subjective value of
the given allocation is described by the following equation.

$$
\begin{align*}
m_{i} & =\frac{\sum_{k=1}^{n-1} x_{k, i}}{\sqrt{n-1}} \cos \theta+y_{i} \sin \theta \\
& =\sum_{k=1}^{n-1} x_{k, i} \frac{1}{\sqrt{n-1}}+y_{i} \sin \theta \tag{23}
\end{align*}
$$

Replacing $\frac{\sum_{k=1}^{n-1} x_{k: 1}}{\sqrt{n-1}}$ by $z_{\text {, }}$. FIC of the postulated agent can be given in the next equations.

$$
\begin{array}{r}
m_{i}=z_{i}\left(a \cdot \cos \theta_{M}-\frac{(1-a)}{\sqrt{n}}\right)+ \\
y_{i}\left(a \cdot \sin \theta_{M}+\frac{\sqrt{n-1}(1-a)}{\sqrt{n}}\right) \\
m_{i}=z_{i}\left(a \cdot \cos \theta_{M}+\frac{(1-a)}{\sqrt{n}}\right)+ \\
y_{i}\left(a \cdot \sin \theta_{M}-\frac{\sqrt{n-1}(1-a)}{\sqrt{n}}\right) \tag{25}
\end{array}
$$

Equations (24) and (25) are effective when $y_{i} \geq \frac{1}{\sqrt{n-1}} z_{i}$ and $y_{i} \leq \frac{1}{\sqrt{n-1}} z_{i}$, respectively. N person ultimatum games from the recipients' perspective and the recipients' FIC are expressed geometrically in $Z-Y$ space, as shown in Fig.9. The decision making of the recipients can be predicted in the same manner as in 2-person ultimatum games. All the possible allocations of 100 units situate on line segment $\mathrm{A}-\mathrm{B}$, and the middle line segment $\mathrm{C}-\mathrm{D}$ is included in the acceptable area. Then, recipients would accept the proposed allocation only when it comes from line segment C-D.

The space in Fig. 9 is obtained by replacing the horizontal and vertical axes of the space in Fig.8. There is an interesting difference between the social orientations of the allocator and the postulated actor (recipients). The allocator's cooperative and competitive orientations get closer to altruistic and indi-

Fig. 9 FIC of the recipients in N-person ultimatum games (from recipients f perspective)
vidualistic orientation respectively, according to the increase of n (number of persons). Conversely, the postulated actor's cooperative and competitive orientation gets close to individualistic and aggressive orientation. It seems that the meaning of θ is fairly different, depending on whether a person is facing many other persons or he/she is facing another person as a leader of a large group, according to the increase of n. Cooperative orientation becomes much the same as altruistic orientation in the former situation, but individualistic in the latter, when n is quite large. Competitive orientation becomes much the same as individualistic orientation in the former situation but aggressive in the latter. The interpretation of θ for the recipients in N -person ultimatum games is shown in Table.3. It seems very likely that the motivational component of the decision making process is affected by the number of persons involved in social settings.

6. Implications for the research

In this paper, it was argued that the decision making of the allocator and the recipient in ultimatum games can be explained and predicted based on

Table． 3 Interrelationship among θ of a group of $n-1$ recipients，attributes of social orientation，and the number of persons，in N－person ultimatum games．This table is effective for a group of $n-1$ recipients．

interpretation of θ			altruiste	cooperative	individualistic	c competitive	aggressive
evaluation formula for the given altematives			y_{1}	$\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{n-1} x_{n i c}+y_{i}\right)$	$x_{i} \quad \frac{\sqrt{m-1}}{\sqrt{n}}$	$\underline{-1}\left(\frac{1}{n-1} \sum_{i=1}^{+3}{ }_{2 k}+y\right.$	$-y_{i}$
θ	n	$n-1$	$90^{\prime \prime}$	$\tan ^{-1} \frac{1}{\sqrt{n-1}}$	0°	$\tan ^{-1}-\sqrt{n-1}$	－90．00
	2	1	90°	$45.0{ }^{*}$	0^{*}	$-45.0{ }^{*}$	－90．0＊
	3	2	90°	$35.3{ }^{*}$	0^{*}	－54．7＊	－90， 0^{*}
	4	3	$90^{\prime \prime}$	$30.0{ }^{*}$	0^{0}	-60.0^{*}	－90．00
	10	9	$90^{\prime \prime}$	$18.4{ }^{*}$	0°	－71．6＊	－90．0 0°
	20	19	90°	$12.9{ }^{*}$	0°	．77．1＊	－90．0 ${ }^{\circ}$
	40	39	$90^{\prime \prime}$	$9.1{ }^{*}$	0°	－80．9＊	－90．0 0°
	60	59	$90^{\prime \prime}$	$7.4{ }^{*}$	$9{ }^{\circ}$	－82．6＊	－90．0 9°
	80	79	90°	$6.4{ }^{*}$	0°	－83．6 ${ }^{\circ}$	－90．0 ${ }^{\circ}$
	100	99	$90^{\prime \prime}$	$5.7{ }^{*}$	0°	－84．3＊	． 90.00°
	1000	999	$90^{\prime \prime}$	$1.8{ }^{*}$	9°	－88．2＊	－90．0．0

the hybrid model of social orientation．It seems that the hybrid model can explain major research find－ ings in ultimatum games quite well．It has been fre－ quently observed that quite a few persons prefer equal division of the provided payoff．Most of the proposed allocations stuck around $50-50$ division． The hybrid model can explain those research find－ ings in ultimatum games considerably well，sup－ posing that each person has his／her own decision criterion FIC（or θ_{M} and a ）．In addition，the analyses of ultimatum games by the hybrid model revealed the importance of the allocator＇s perception of the FIC of the recipient．Decision making by the allo－ cator is determined by the interaction between hisher own FIC and the perceived FIC of the reci－ pients．That is，if the allocator cannot perceive the recipient＇s choice attitude in an appropriate manner． he／she will not properly deal with the decision prob－ lems．Then，research on the perception of the other person＇s decision attitude would be quite important
to understand the decision making process of a per－ son．

The ultimatum games are unique decision making situations．It provides us a useful research frame－ work to study various psychological aspects of people＇s decision making in social settings．Recent－ ly，several researchers began to pay attention to ul－ timatum games where more than two persons are involved，that is， N －person ultimatum games（Güth \＆van Damme，1998；Knets \＆Camerer，1995）．So－ cial settings，where more than two parties interact with each other，are ubiquitous．There seem to exist more interesting phenomenon in N －person situations， which do not appear in 2 －person situations．For ex－ ample，a variety of problems caused by the negotia－ tion between leader and followers can be seen in any organization or work group．A person has to make a decision against a group of many people in some situations，and he／she has to make a decision against a single person，as a delegate of a group of people in other situations． N －person ultimatum games would
provide a useful research frame work for a variety of such social settings.

The analyses conducted based on the hybrid model in this paper, showed clearly that the decision making of the allocator and recipients in N -person ultimatum games can be explicitly explained and predicted in the same manner as 2 -person ultimatum games. Two major components of the hybrid model, social orientation and equality seeking, can reveal how people evaluate the given altematives to make a decision. In addition, our analysis in this paper also made clear that the perception or cognition of other people's motivational state also plays an important role in decision making, in some social settings. The hybrid model together with ultimatum games are expected to provide a new research perspective and an effective research tool for a variety of problems in our society, and to contribute to the research on personal decision making in various social settings.

References

Camerer, C. F. (2003) Behavioral Game Theory: Experiments in Strategic Interaction. Princeton University Press, Princeton, NJ.
Camerer, C. F. and Thaler, R. H. (1995) Ultimatums, dictators and manners. Journal of Economic Perspectives. 9, 209-219.
Doi T. (1990) Social motivation of the individual in N -person games. A paper presented at the 4 -th Intemational Conference on Social Dilemmas, March, 1990, Sapporo, Japan
Doi T. (1990) Experimental investigation of the validity of the characteristic space theory and the measurement of social orientation. Japanese Journal of Experimental Social Psychology, 29, 15-24.
Doi T. (1994) Social orientation analysis of the common and individual interest problems. In

Social Dilemma and Cooperation (Eds. Schulz U. \& Mueller U.) Berlin: Springer-Verlag. 1-23.

Doi T. (2007) A hybrid model of social orientation; A theoretical analysis. A paper presented at the 12-th International Conference on Social Dilemmas, July, 2007, Seattle, USA.
Doi T. (2009) Theoretical analysis of dictator (ultimatum) games based on the hybrid model of social orientation. A paper presented at the 13-th International Conference on Social Dilemmas, August, 2009, Kyoto, Japan..
Doi T. (2010) Decision making of a person in the ultimatum games: Theoretical analysis based on the hybrid model of social orientation. Journal of Psychological Science of Health Sciences University of Hokkaido. No.6. 43-52.
Doi, T. \& Imai, S. (1984) A characteristic space theory and motivational-cognitive model of choice behavior. Japanese Psychological Review, 29, 186-210.
Griesinger, D. W. \& Livingstone, J. W., Jr.(1973) Toward a model of interpersonal motivation in experimental games. Behavioral Science, 18, 409-431.
Güth, W. (1995) On ultimatum bargaining experiments: A personal review. Journal of Economic Behwior and Organization. 27, 329-344.
Güth, W. and van Damme, E (1998), Information, strategic behavior and faimess in ultimatum bargaining: An experimental study. Journal of Mathematical Psychology. 42, 227-247.
Güth, W., Schmittberger, R. and Schwarze, B.(1982) An experimental analysis of ultimatum bargaining. Journal of Economic Behavior and Organization. 3, 267-388.
Knets, M. J. and Camerer, C. F. (1995) Outside options and social comparison in three-player ultimatum game experiments. Games and Economic Behavior: 10, 65-94.

Appendix

Equation（11），which describes the subjective values of choice altematives in N －person relations， can be obtained as follows．

First，let us consider 3－person relations where $n=3$ ．Choice alternatives are expressed by points $\left(x_{i}, y_{1, i}, y_{2, i}\right)$ in three dimensional $X-Y_{i-}-Y_{2}$ space． x_{i} represents the payoff to self，and $y_{1, i}$ and $y_{2, i}$ the payoffs to two other persons．A person is sup－ posed to choose the choice altemative（ x_{i} ， $y_{1, i}, y_{2, i}$ ）that gives the highest coordinate value m_{i} on axis M in this space，in the same way as 2 －person relations．The coordinate value m_{i} is considered to reflect the weighted sum of the payoffs to self and two other persons．When a person gives the same weight to the payoffs to two other persons，axis M is supposed to be included in the 2 dimensional space formed by axes X and Y_{M} that locates midway be－ tween two axes Y_{I} and Y_{2} ．The coordinate values of choice alternatives（ $x_{i}, y_{1 i}, y_{2 i}$ ）on axis Y_{M} are given by $\frac{y_{1}+y_{2 X}}{\sqrt{2}}$ ，and axes X and Y_{M} are mutually orthogonal．Introducing θ to express the angle be－ tween two axes X and M ，the coordinate values m_{i} of choice altematives（ $x_{i}, y_{1 i}, y_{2 i}$ ）on axis M are expressed by $x_{i} \cos \theta+\frac{y_{1 i}+y_{2 i}}{\sqrt{2}} \sin \theta$ ，in a man－ ner similar to 2 －person relations．That is，

$$
m_{i}=x_{i} \cos \theta+y_{1, i} \frac{\sin \theta}{\sqrt{2}}+y_{2, i} \frac{\sin \theta}{\sqrt{2}} .
$$

Obviously，it describes the weighted sum of the payoffs to 3 persons．Then，the angle θ between two axes X and M in $X-Y_{M}$ space can be regarded as re－ flecting the social orientation of a person in 3－person relations．

4－person relations（ $n=4$ ）can be described in the same way as 3 －person relations shown above．

Choice altematives are expressed by points （ $x_{i}, y_{1, i}, y_{2, i}, y_{3, i}$ ）in 4 dimensional $X-Y_{Y}-Y_{2}-Y_{3}$ space．A person is supposed to choose the choice alternative $\left(x_{i}, y_{1, i}, y_{2, i}, y_{3, i}\right)$ that gives the highest coordinate value m_{i} on axis M in this space． When a person gives the same weight to the payoffs to three other persons，axis M is supposed to be in－ cluded in the 2－dimensional space formed by axes X and Y_{M} that locates in the center of three axes Y_{1}, Y_{2} and Y_{3} ．The coordinate values of choice alternatives （ $x_{i}, y_{1, i}, y_{2, i}, y_{3, i}$ ）on axis Y_{M} are given by $\frac{y_{1,}+y_{2 \Lambda}+y_{3, i}}{\sqrt{3}}$ ，and axes X and Y_{M} are mutually or－ thogonal．Introducing θ to represent the angle be－ tween two axes X and M ，the coordinate values m_{i} of choice altematives（ $x_{i}, y_{1, i}, y_{2, i}, y_{3, i}$ ）on axis M are expressed by $x_{i} \cos \theta+\frac{y_{1 i+}+y_{2 i}+y_{3, i}}{\sqrt{3}} \sin \theta$ ． that is，

$$
\begin{aligned}
m_{i}=x_{i} \cos \theta & +y_{1, i} \frac{\sin \theta}{\sqrt{3}} \\
& +y_{2, i} \frac{\sin \theta}{\sqrt{3}}+y_{3, i} \frac{\sin \theta}{\sqrt{3}}
\end{aligned}
$$

Then，the angle θ between two axes X and M in $X-Y_{M}$ space can be regarded as reflecting the social orientation of a person in 4 －person relations．

Based on the above reasoning for 3－and 4 －person relations，the social orientation of a person in N －person relations can be described in 2 dimen－ sional space formed by axes X and Y_{M} ，when he／she gives the same weight to the payoffs to $n-1$ oth－ er persons．Axis Y_{M} situates in the center of $n-1$ axes $Y_{h}, Y_{2}, Y_{3}, \cdots \cdots$, and Y_{n-1} in the space，and axes X and Y_{M} are mutually orthogonal．The coordinate values of choice alternatives $\left(x_{i}, y_{1, i}, y_{2, i}, \cdots \cdots\right.$ ， $y_{n-1, i}$ ）on axis Y_{M} are given by $\frac{y_{M}+y_{2,1}+\cdots+y_{n-L}}{\sqrt{n-1}}$ ． Introducing θ to express the angle between two axes X and M ，the coordinate values m_{i} of choice alterna－
tives $\left(x_{i}, y_{1 i}, y_{2, i}, \cdots \cdots, y_{n-1, i}\right)$ on axis M are described by $x_{i} \cos \theta+\frac{y_{1 i}+y_{2, i}+\cdots+y_{n-1, i}}{\sqrt{n-1}} \sin \theta$. in a manner similar to 2 -person relations, that is,

$$
\begin{aligned}
m_{i}= & x_{i} \cos \theta+y_{1, i} \frac{\sin \theta}{\sqrt{n-1}}+y_{2, i} \frac{\sin \theta}{\sqrt{n-1}} \\
& +\cdots+y_{n-1, i} \frac{\sin \theta}{\sqrt{n-1}} \\
= & x_{i} \cos \theta+\sum_{k=1}^{n-1} y_{k, i} \frac{\sin \theta}{\sqrt{n-1}}
\end{aligned}
$$

It clearly expresses the weighted sum of the payoffs to n persons, and the weights given to $n-1$ other persons' payoffs are the same. Then, the angle θ between two axes X and M in 2 dimensional $X-Y_{M}$ space can be genuinely regarded as reflecting the social orientation of a person in N -person relations.

[^0]: School of Psychological Science，Health Sciences University of Hokkaido

