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Abstract

Phosphoproteins are thought to play a primary role in the deposition of mineral on the
collagen of dentin. We previously reported that immobilized phosphoproteins reduced activa-
tion energy for mineral induction in metastable mineralizing solutions, and that phosphate ester
was essential for mineral induction. Interfacial tension is a good measure to evalute the
mineral induction potential because it is a function of the activation energy.

The purpose of this study was to determine the effect of phosphate ester on interfacial
tension for mineral nucleation by immobilized phosphoprotein. Phosvitin from egg yolk was
used as a model phosphoprotein in this study. Phosvitin was cross-linked to agarose beads
with divinyl sulfone. A portion of the cross-linked phosvitin was partially dephosphorylated
with potato acid phosphatase. Then, samples were incubated at 37°C in metastable solutions
that do not spontaneously precipitate, and the mineral induction time was determined in the
samples. The mineral formed was confirmed by X-ray diffraction to be hydroxyapatite.
Using classical nucleation theory, the interfacial tension for hydroxyapatite nucleation by
intact phosvitin was determined to be 91.3ergs/cm?, it was 93.2 ergs/cm? for 50%-dephosphor-
ylated phosvitin, and 98.1 ergs/cm? for 70%-dephosphorylated phosvitin. Mineral formation
was not induced by phosvitin that had been 94%-dephosphorylated. These results indicate
that the potential of hydroxyapatite nucleation of phosvitin is high as long as it has a minimum
number of phosphate esters for hydroxyapatite nucleation, and that the interfacial tension for
hydroxyapatite nucleation by immobilized phosphoprotein is dependent on the degree of

phosphorylation.
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Introduction

Acidic macromolecles including phosphoglycoproteins, sulfated carbohydrates, acidic pro-
teins, and acidic phospholipids have been associated with biomineralization # vivo'~'2. An
understanding of how acidic macromolecules control induction and growth of mineral has
potential applications in medicine and biomaterials science. We have been focusing on phos-
phoproteins which have been considered to have a primary role in nucleation of mineral in
dentin*"®. When phosphoproteins are free in solution they inhibit mineral nucleation and
crystal growth on apatite from spontaneously precipitating solutions. However, when they are
immobilized on insoluble substrates such as agarose beads and collagen fibrils, they induce
mineral formation from metastable solutions that do not spontaneously precipitate* ®. It was
found that mineral induction time increased with progressive dephosphorylation of immobilized
phosphoprotein, and it was concluded that phosphate esters in phosphoprotein are required for
mineral nucleation®.

We are interested in defining the role of the surface in mineral induction. The interfacial
tension for mineral nucleation is a good measure of the mineral induction potential of a
surface'. We previously reported that interfacial tension for hydroxyapatite nucleation on
phosphophoryn was 90.1 ergs/cm? ¥, similar to the interfacial tension (91.0 ergs/cm?) for
hydroxyapatite nucleation on hydroxyapatite determined by Christoffersen et a/.*®. This led
to the assumption that highly phosphorylated surfaces have similar interfacial tension for
hydroxyapatite nucleation.

The objective of this study was to determine whether interfacial tension for hydroxyapatite

nucleation on immobilized phosphoprotein depends on phosphate ester.
Materials and methods

1. Immobilization of Phosphoprotein to Agarose Beads

Phosvitin (Sigma Chemical Co., St. Louis, MO) was used as a model phosphoprotein in this
study. It has a 35 kDa apparent molecular weight, and contains 57% serine + phosphoserine,
9.1% -isoleusine, 6.8% -lysine, and the phosphate content is 24.6% (w/w). Phosvitin was
immobilized to agarose beads (Sepharose 4B, Pharmacia Fine Chemicals, Uppsala, Sweden)
with divinyl sulfone (Sigma Chemical Co., St. Louis, MO)'®. The amount of phosvitin immobil-
ized to agarose beads was determined by phosphate assay with Malachite Green!®.
2 . Dephosphorylation of Immobilized Phosphoprotein

Phosvitin covalently crosslinked to agarose beads was partially dephosphorylated with
potato acid phosphatase (Sigma Chemical Co.) in 10 mM Sodium acetate buffer containing 50

uM EDTA, pH 5.8 at 37°C'”. The amount of remaining organic phosphate ester was
(8)
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measured in dephosphorylated phosvitin.
3 . Mineral Induction Experiment

The compositions of the metastable calcium phosphate solutions that were used in this study
are shown in Table 1. The degrees of solution saturations [log (ion activity product) / log
(activity product at saturation)] with respect to hydroxyapatite were calculated using computer
program WATEQ4F'™®. Mineralizing solution saturations of 7.41, 7.53, 7.59 and 7.74 were
used. In all cases, the mineralizing solution had a molar Ca/P of 1.67, contained 10 mM Hepes
-KOH for buffering at pH 7.40 at 37°C, and 0.02% sodium azide to prevent bacterial growth,
and had a final ionic strength adjusted to 0.16 with KCl. The solutions were filtered through
a 0.22 um filter. None of these solutions spontaneously precipitated, even when held at 37°C

for seven days.

Table1 Composition of metastable calcium phosphate solution

[Ca][P] (mM?) Ca(mM) PO, (mM) KCl(mM) Hepes(mM) Saturation

3.30 2.35 1.41 150 10 7.782
3.15 2.29 1.37 150 10 7.650
3.00 2.24 1.34 150 10 7.585
2.70 2.12 1.27 150 10 7.411

Ten microliters of each sample were incubated in 3 ml of the metastable solutions at 37°C in
a shaker (ADVANTEC TOYO, TS-200, Tokyo) operated at 125 rpm. Samples were taken at
several time points and filtered. The filtrate was dissolved in 0.1N HCI containing 0.25%
lanthanun chloride. Then, samples were analyzed for calcium by atomic absorption
spectrometry (Perkin-Elmer, Model 5100, Norwalk, Conn, U.S.A.).

The induction time was determined from a plot of Ca (uxg) vs. incubation time (sec). Using
this information, a slope of the plot of log (induction time) vs. (log saturation)~? was identified.
The value of this slope was used to calculate the interfacial tension.

4 . Interfacial Tension

Mineral nucleators reduce the free energy required for nucleation, then facilitating crystal
nucleation from solutions that do not spontaneously precipitate. The interfacial tension
between the substrate and the crystalline phase formed is a good measure of the nucleation
potential of the substrate!®. The interfacial tension (o), as described by classical nucleation
theory?”, was calculated as follows:

6=2.303kT[(ba)/2Lv?]"?
o = interfacial tension
k = Boltzmann’s constant (1.38X10-¢ ergs/deg)

T = temperature in degrees Kelvin (310.15°K)
a = slope of log (induction time) vs. (log saturation)?
A = a dimensionless geometric factor (16z/3 for spherical)

(9)
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v = molecular volume of hydroxyapatite (2.8 X107%2)

5 . Scanning Electron Microscopy

Mineral formed was collected by filtration onto a 0.2xm polycarbonate membrane, rinced
with water adjusted to pH 10 with NH,OH, coated with gold, and observed in a JEOL JSM

-T100.
6 . Micro Area X-ray Diffraction

Mineral formed was rinsed with water adjusted to pH 10 with NH,OH, dried, and identified
using RIGAKU RINTO-2000 (Cu Ka, 50kV, 25mA).

Results

The phosphate determination showed that the phosvitin covalently crosslinked to agarose

beads was 12.2ug /ul beads.

Intact and three degrees (49.5%, 71.1% and 94.0%) of dephosphorylated phosvitin were
obtained. The intact phosvitin, 50%- and 70% -dephosphorylated phosvitin induced mineral
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Fig. 1  Mineral induction by intact PV-Agarose

beads
Determination of mineral induction times by intact
phosvitin cross-linked to agarose beads in metasta-
ble solution having the saturation of 7.74 (@), 7.59
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Fig. 2 Mineral induction by 50%-Dep PV-Agarose

beads
Determination of mineral induction times by
50%-dephosphorylated Phosvitin cross-linked to
agarose beads in metastable solution having the
saturation of 7.74 (@), 7.59 (X), or 7.53 (A&).
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formation in the mineralizing solution (Figure 1, 2, and 3), while the 94%-dephosphorylated

phosvitin did not induce mineral formation.

mineral induction time.

ylation of phosphoprotein.

Increasing the solution saturation decreased

Also, mineral induction time increased with progressive dephosphor-

The interfacial tension for each of these preparations was calculated from the slope of a plot

of log (induction time) vs. (log saturation)=2 (Fig. 4).

Interfacial tension for hydroxyapatite

nucleation on intact phosvitin was 91.3 ergs/cm?, it was 93.2 ergs/cm? for 50%-dephosphor-

ylated phosvitin, and 98.1 ergs/cm? for 70%-dephosphorylated phosvitin (Table 2).

Electron microscopic observations showed that large crystals were formed on the surface of

agarose beads in intact, 50%-, and 70%-dephosphorylated phosvitin, and that crystals were not
formed with the 94%-dephosphorylated phosvitin (Fig. 5).

Micro area X-ray diffraction showed that the crystals formed were all hydroxyapatite (Fig.

6). The peaks were broadened, suggesting carbonate-containing or calcium-deficient hydrox-

yapatite was formed.
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Determination of mineral induction times by
70%-dephosphorylated Phosvitin cross-linked to
agarose beads in metastable solution having the
saturation of 7.74 (@), 7.66 (X), or 7.59 (A).
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Fig. 4 Plot for determination of the interfacial
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Plot for determination for interfacial tension. The
slopes of the lines for intact phosvitin (@), 50%-
(M), and 70%-dephosphorylated phosvitin (A) were
used to calculate the interfacial tension.
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Table2 Interfacial tension for hydroxyapatite nu-
cleation on phosvitin

Interfacial Tension

(ergs/cm?)
intact-PV 91.3
50%Dep-PV 93.2
70%Dep-PV 98.1

Fig. 5

SEM photographs of mineral formed on phosvitin cross-linked to agarose beads one day after incuba-
tion in the solution with saturation 7.59. The crystalline clusters were formed on the surface of agarose
beads in (a) intact phosvitin, (b) 50%-dephosdphorylated phosvitin, and (c) 70%-dephosphorylated
phosvitin, (d) 94%-dephosphorylated phosvitin cross-linked to agarose beads did not induce mineral
formation. (Bar=10zm)
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Fig. 6 Micro-area X-ray diffraction pattern of mineral formed by (A) intact phosvitin, (B)
50%-dephosphorylated phosvitin, and (C) 70%-dephosphorylated phosvitin cross-linked to

agarose beads, and (D) hydroxyapatite.

Discussion

13

Previously, we reported that immobilized phosphoproteins induced mineral formation while

free phosphoproteins did not induce from metastable calcium phosphate solutions* 9.

overall free energy of binding to their complementary surfaces decrease.

(13)

These
findings suggested that immobilized phosphoproteins bind most strongly and in a stereospecific
way to calcium phosphate complexes that present a complementary constellation of surface

charges. On the other hand, free phosphoproteins self-associate, and this may make the
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In the study here, we confirmed that a minimum amount of phosphate ester is required for
mineral nucleation in immobilized phosphoprotein. The mineral formed by immobilized
phosvitin was confirmed as a hydroxyapatite by X-ray diffraction pattern.

Heterogeneous nucleation reduces the activation energy required for crystal nucleation in the
solution that does not precipitate spontaneously. The interfacial tension between the substrate
and the crystalline phase formed is the most important factor controlling the crystal nucleation
process. When the surface of the solid substrate match well with the crystalline phase,
interfacial tension becomes very small'®.

In the present study, increasing the solution saturation decreased mineral induction time with
regard to intact, 50%-, and 70%-dephosphorylated phosvitin. Using the data concerning
mineral induction time and the classical nucleation theory??, the interfacial tension for hydrox-
yapatite nucleation on intact phosvitin was determined to be 91.3 ergs/cm? This value is
consistent with that that we reported previously*~®. With 50%5-dephosphorylated phosvitin, it
was 93.2 ergs/cm?, and it was 98.1 ergs/cm? for 70%-dephosphorylated phosvitin. However,
hydroxyapatite nucleation was not induced by 94%-dephosphorylated phosvitin. The inter-
facial tension for hydroxyapatite nucleation on hydroxyapatite has been reported as 91.0 ergs/
cm?, and for fluoroapatite, as 113.0 ergs/cm?'9. Therefore, the interfacial tensions that were
obtained in this study were dependent on degree of phosphorylation but still similar to that on
hydroxyapatite.

This study indicates that interfacial tension for hydroxyapatite nucleation on phosvitin is
dependent on the degree of phosphorylation, and that the potential of hydroxyapatite nucleation
of dephosphorylated phosvitin is still high as long as phosphorylation but has a minimum

number of phosphate esters for hydroxyapatite nucleation.
Conclusions

1. Mineral induction times increased with progressive dephosphorylation of phosvitin.
Mineral formation was not induced by phosvitin that was 94%-dephosphorylated. This
shows that a minimum number of phosphate esters are required for mineral induction.

2. The interfacial tension for hydroxyapatite nucleation on intact phosvitin was determined
to be 91.3 ergs/cm?  For 50%-dephosphorylated phosvitin, it was 93.2 ergs/cm?, and it was
98.1 ergs/cm? for 70%-dephosphorylated phosvitin. The interfacial tension for hydro-
xyapatite nucleation by immobilized phosvitin is dependent on the degree of phosphorylation.

3. The potential of hydroxyapatite nucleation of phosvitin is high as long as phosvitin has a

minimum number of phosphate esters for hydroxyapatite nucleation.
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